目录
概览
论文标题:
SIMSAM: Zero-shot medical image segmentation via simulated interaction
论文链接:
https://arxiv.org/pdf/2406.00663
代码链接:
https://github.com/BenjaminTowle/SimSAM
Abstract
本文提出了SIMSAM(Simulated Interaction for Segment Anything Model),一种针对医学图像零样本分割的新方法。SIMSAM通过模拟用户交互生成大量候选掩码,并利用一种新颖的聚合方法来输出最兼容的掩码。该方法在SAM(Segment Anything Model)的基础上,无需额外训练即可直接应用于医学图像分割任务,并在三个公开医学成像数据集上展示了显著的分割精度提升(最高可达15.5%)。
本文贡献:
1. 提出并实现了SIMSAM框架
作者创新性地提出了SIMSAM(Simulated Interaction for Segment Anything Model