论文解读 |SIMSAM:通过模拟交互实现零样本医学图像分割

目录

概览

Abstract

 Background

 Method

 Experiment

Conclusion

Assignment


概览

论文标题:

SIMSAM: Zero-shot medical image segmentation via simulated interaction

论文链接:

https://arxiv.org/pdf/2406.00663

代码链接:

https://github.com/BenjaminTowle/SimSAM


Abstract

本文提出了SIMSAM(Simulated Interaction for Segment Anything Model),一种针对医学图像零样本分割的新方法。SIMSAM通过模拟用户交互生成大量候选掩码,并利用一种新颖的聚合方法来输出最兼容的掩码。该方法在SAM(Segment Anything Model)的基础上,无需额外训练即可直接应用于医学图像分割任务,并在三个公开医学成像数据集上展示了显著的分割精度提升(最高可达15.5%)。

 

本文贡献:

1. 提出并实现了SIMSAM框架

作者创新性地提出了SIMSAM(Simulated Interaction for Segment Anything Model

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值