【数据结构】二叉排序树(查找+插入+删除+效率分析)完整代码+解析

3.1 二叉排序树

3.1.1 定义
  • 二叉排序树的定义

    又称二叉查找树(BST,Binary Search Tree)

    二叉排序树是具有以下性质的二叉树:

    左子树结点值<根结点值<右子树结点值

    • 进行中序遍历,可以得到一个递增的有序序列。

    在这里插入图片描述

3.1.2 查找操作
  • 步骤

    1.若树非空,目标值与根结点的值比较;

    2.若相等,则查找成功;

    若小于根结点,则在左子树上查找;

    否则在右子树上查找;

    3.查找成功返回结点指针;查找失败返回NULL。

  • 代码

    //二叉排序树结点
    typedef struct BSTree{
         
        int key;
        struct BSTNode *lchild,*rchild;
    }BSTNode,*BSTree;
    
    //在二叉排序树中查找值为key的结点
    BSTNode *BST_search(BSTree T,int key){
         
        //若树为空或等于根结点值,则结束循环
        while(T!=NULL&&key!=T->key){
         
            if(key<T->key)
                T=T->lchild; //key小,则在左子树上找
            else
                T=T->rchild; //key大,则在右子树上找
        }
        return T;
    }
    
  • 用递归方式实现

    BSTNode *BSTSearch(BSTree T,int key){
         
        if(T==NULL)
            return NULL;
        if(key==T->key)
            return T;
        else if(key<T->key)
            return BSTSearch(T->lchild,key); //递归在左树中找
        else
            return BSTSearch(T->rchild,key); //递归在右子树中找
    }
    
    • 递归的最坏空间复杂度 O ( h ) O(h) O(h),非递归是 O ( 1 ) O(1) O(1),所以非递归效率更加好。
3.1.3 插入操作
  • 思路

    若原二叉树为空,则直接插入结点;

    否则,若关键字k小于根结点值,则插入到左子树;

    若关键字k大于根结点值,则插入到右子树。

  • 代码

    //在二叉排序树插入
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值