多重背包问题-单调队列优化-C++实现(深入刨析)

前面的话

这是我学习初学算法时研究最久的单个问题了,挺有纪念意义的,吸收了很多大佬的题解并断断续续整理了一些笔记,希望大家看完有点收获的话希望能点赞鼓励我一下hh

多重背包问题

N种物品和一个容量是V的背包

i种物品最多有si件,每件体积是vi,价值是wi

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大
输出最大价值

输入格式

第一行两个整数N, V,用空格隔开,分别表示物品种数和背包容积

接下来有N行,每行三个整数vi, wi, si,用空格隔开,分别表示第i种物品的体积、价值和数量

输出格式

输出一个整数,表示最大价值

数据范围

0 < N ≤ 1000 0<N≤1000 0<N1000
0 < V ≤ 20000 0<V≤20000 0<V20000
0 < v i , w i , s i ≤ 20000 0<vi,wi,si≤20000 0<vi,wi,si20000

输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例
10

思路

  1. 使用二进制优化的时间复杂度为 O ( n v l o g s ) O(nvlogs) O(nvlogs),而本题的操作数量级在 1 0 9 10^9 109,故会导致超时,适用单调队列优化

  2. 若总体积为 m m m,当前物品价值为 w w w,总体积为 v v v,数量为 s s s,设 t t t满足 m − t × v ≥ 0 m - t × v ≥ 0 mt×v0 m − ( t + 1 ) × v < 0 m - (t + 1) × v < 0 m(t+1)×v<0,即不超过总体积情况下的最大物品数量

  3. t ≤ s t≤s ts时,物品的限制为体积 m m m,相当于在体积 m m m下当前物品的数量无限,故多重背包问题可通过完全背包问题的解法处理

  4. t > s t > s t>s时,物品的限制为数量 s s s,可以按完全背包的思路列出代码

    // 设s = 3, t = 4, p为区间[0, m % v]的任意整数
    // 设f(i-1,j) = g(j)
    f(i,     j) = max(g(j),g(j-v)+w,g(j-2v)+2w,g(j-3v)+3w)
    f(i,j- v+p) = max(     g(j-v),  g(j-2v)+ w,g(j-3v)+2w,g(j-4v)+3w)
    f(i,j-2v+p) = max(              g(j-2v),   g(j-3v)+ w,g(j-4v)+2w)
    f(i,j-3v+p) = max(                         g(j-3v),   g(j-4v)+ w)
    f(i,j-4v+p) = max(                                    g(j-4v))
    
    • k k k满足 k ≤ t − s k≤t - s kts时, j − k v j - kv jkv的体积仍然能容纳 s s s个物品,故第 k k k个式子比第 k − 1 k - 1 k1个的式子多一项,则无法通过第 k k k个式子的最大值推导第 k − 1 k - 1 k1个式子的最大值
    • k k k满足 k > t − s k > t - s k>ts时,此时 j − k v j - kv jkv的体积仅能容纳小于 s s s个物品,物品限制为体积,故第 k k k个式子和第 k + 1 k + 1 k+1个项数相同,则可以通过第 k + 1 k + 1 k+1个式子推导第 k k k个式子
    • 故能够从下到上通过类似长度为 s s s的滑动窗口形式更新状态,每次取出维护的滑动窗口的极值即可
    • 综上可知,枚举所有余数 p p p,对于当前 p p p,再从小到大枚举更新所有体积 j j j满足 j % v = p j \% v = p j%v=p的当前 i i i层的所有状态 f ( i , j ) f(i, j) f(i,j),最终得到当前 i i i层的所有状态 f ( i , j ) f(i, j) f(i,j)
  5. 对当前余数 p p p,若 t > s t > s t>s,则所有需要更新的体积的序列为

    p p+v p+2v p+3v ... p+(s-1)v p+sv p+(s+1)v ... p+tv
    // 已知体积为从小到大更新, 故该序列为从左到右枚举
    
    • 若需要更新序列中第 i i i个元素,则需要得到以 i − s i - s is为起点的长度为 s s s的区间的状态的最大值,故适用单调队列实现滑动窗口,快速获取该区间的最大值

      • 序列中任意元素 p + k v p + kv p+kv表示状态 f ( i − 1 , p + k v ) f(i - 1, p + kv) f(i1,p+kv)
    • 注意每个状态 f ( i − 1 , p + k v ) f(i - 1, p + kv) f(i1,p+kv)相邻层中存在偏移量w

      f(i,p) = f(i-1,p)
      f(i,p+ v) = max(f(i-1,p)+ w, f(i-1,p+v))
      f(i,p+2v) = max(f(i-1,p)+2w, f(i-1,p+v)+w, f(i-1,p+2v))
      

      故每次比较对原式进行等价变换,实现状态的直接比较

      f(i,p) = f(i-1,p)
      f(i,p+ v) = max(f(i-1,p), f(i-1,p+v)-w) + w
      f(i,p+2v) = max(f(i-1,p), f(i-1,p+v)-w, f(i-1,p+2v)-2w) + 2w
      // 对k层所有状态减去kw再进行比较入队, 故入队的元素为f(i,p+kv)-kw, 出队时加上kw获取真实值
      
  6. 时间复杂度

    O ( n v ) O(nv) O(nv)

实现

#include <bits/stdc++.h>
using namespace std;

const int N = 2e4 + 10;

int n, m;
int q[N];
int dp[N], back[N];

int main(){
    cin >> n >> m;
    for(int i = 0; i < n; i++){
        int v, w, s;
        cin >> v >> w >> s;
        
        // 由于使用滚动数组且从小到大枚举体积
        // 故需要辅助数组保存i - 1层的状态
        memcpy(back, dp, sizeof dp);
        
        // 枚举所有余数
        // 更新当前i层的所有体积
        for(int u = 0; u < v; u++){
            // 体积从小到大枚举更新
            // 单调队列中的元素是体积
            int tt = -1, hh = 0;
            for(int j = u; j <= m; j += v){
                // 若当前维护的区间长度大于s则出队
                if(tt >= hh && q[hh] < j - s * v) hh++;
                // 注意获取的是当前元素之前的长度为s的窗口的最大值
                // 故先处理再入队
                // 注意出队时获取真实值
                // 需要判断队列是否为空
                // 因为使用的是数组模拟队列
                // 故若不判断则第一次枚举时dp[k]可能被窗口外的t[0]更新
                if(tt >= hh) dp[j] = max(dp[j], back[q[hh]] + (j - q[hh]) / v * w);
                while(tt >= hh && back[j] - (j - u) / v * w >= back[q[tt]] - (q[tt] - u) / v * w) tt--;
                q[++tt] = j;
            }
        }
    }
    
    cout << dp[m] << endl;
    
    return 0;
}
  • 4
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西西努力变强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值