c++背包九讲之多重背包

一、背包九讲总述

关于动态规划问题,最典型的就是背包九讲,先理解背包九讲后再总结关于动态规划的问题。

1、01背包问题
2、完全背包问题
3、多重背包问题
4、混合背包问题
5、二维费用的背包问题
6、分组背包问题
7、背包问题求方案数
8、求背包问题的方案
9、有依赖的背包问题
上两篇讲述了c++背包九讲之01背包c++背包九讲之完全背包

二、多重背包问题
多重背包问题: 有n件物品和一个容量为C的背包, 每种物品有k[i]件,第i件物品的费用是w[i],价值是v[i]。求解将哪些物品装入背包可使价值总和最大。

这个就不用多叙述了,相信看了上两篇文章的小伙伴非常容易理解这个问题。区别无非就是数量的限制。下面从几个角度来实现一下:
示例:参考这个图多重背包问题
其中,V表示价值,W表示重量,K表示数量
在这里插入图片描述
方法一:添加附加数量限制条件

#include<iostream>
#include<algorithm>

using namespace std;

//全局变量定义在堆区,自动初始化
int V[100][100];
int x[100];
int k[100];

int packet(int n, int C, int v[], int w[],int k[])
{
	int i = 0, j = 0,l = 0;
	//此循环为核心,重点!!
	for (i = 0; i <= n; i++)
	{
		for (j = 1; j <= C; j++)
		{
			//注意约束条件,不能无限的加
			for (l = 1; l <= k[i] && l*w[i] <= j; l++)
			{
				if (j < w[i])
				{
					V[i][j] = V[i - 1][j];
				}
				else
					V[i][j] = max(V[i - 1][j], V[i - 1][j - l*w[i]] + l*v[i]);
			}
		}
	}
	cout << V[n][C] << endl;
	return 0;
}

int main()
{
	int n;		//输入的物品个数
	int C;		//最大的容量

	int v[100] = { 0 };		//第i个物品的价值
	int w[100] = { 0 };		//第i个物品的重量
	int k[100] = { 0 };
	cout << "输入物品个数" << endl;
	cin >> n;
	cout << "输入背包容量" << endl;
	cin >> C;
	cout << "输入各个物品的价值" << endl;
	for (int i = 1; i <= n; i++)
	{
		cin >> v[i];
	}
	cout << "输入各个物品的重量" << endl;
	for (int i = 1; i <= n; i++)
	{
		cin >> w[i];
	}
	cout << "输入各个物品的数量" << endl;
	for (int i = 1; i <= n; i++)
	{
		cin >> k[i];
	}
	packet(n, C, v, w, k);
	while (1);
}

在这里插入图片描述
方法二:转化为01问题(二维数组)

#include<iostream>
#include<algorithm>

using namespace std;

//全局变量定义在堆区,自动初始化
int V[100][100];
int x[100];
int k[100];

int packet(int n, int C, int v[], int w[], int k[])
{
	int i = 0, j = 0;
	int l = n;
	//扩大物体数量
	for (i = 0; i <= n; i++)
	{
		if (k[i] != 1)
		{
			w[l+1] = w[i];
			v[l+1] = v[i];
			l++;
			k[i]--;
		}
	}
	//此循环为核心,重点!!
	for (i = 0; i <= l; i++)
	{
		for (j = 1; j <= C; j++)
		{
			if (j < w[i])
			{
				V[i][j] = V[i - 1][j];
			}
			else
				V[i][j] = max(V[i - 1][j], V[i - 1][j - w[i]] + v[i]);
		}
	}
	cout << V[l][C] << endl;

	cout << endl;
	return 0;
}

int main()
{
	int n;		//输入的物品个数
	int C;		//最大的容量

	int v[100] = { 0 };		//第i个物品的价值
	int w[100] = { 0 };		//第i个物品的重量
	int k[100] = { 0 };
	cout << "输入物品个数" << endl;
	cin >> n;
	cout << "输入背包容量" << endl;
	cin >> C;
	cout << "输入各个物品的价值" << endl;
	for (int i = 1; i <= n; i++)
	{
		cin >> v[i];
	}
	cout << "输入各个物品的重量" << endl;
	for (int i = 1; i <= n; i++)
	{
		cin >> w[i];
	}
	packet(n, C, v, w, k);
	while (1);
}

在这里插入图片描述
方法三:转化为01问题(滚动一维数组)

#include<iostream>
#include<algorithm>

using namespace std;

//全局变量定义在堆区,自动初始化

int x[100];
int k[100];
int V[100];

int packet(int n, int C, int v[], int w[], int k[])
{
	int i = 0, j = 0;
	int l = n;
	for (i = 0; i <= n; i++)
	{
		if (k[i] != 1)
		{
			w[l+1] = w[i];
			v[l+1] = v[i];
			l++;
			k[i]--;
		}
	}
	//此循环为核心,重点!!
	for (i = 0; i <= l; i++)
	{
		//滚动数组优化空间,逆序
		for (j = C; j > 0; j--)
		{
			if (j < w[i])
			{
				V[j] = V[j];
			}
			else
				V[j] = max(V[j], V[j - w[i]] + v[i]);
		}
	}

	cout << V[C] << endl;

	cout << endl;
	return 0;
}

int main()
{
	int n;		//输入的物品个数
	int C;		//最大的容量

	int v[100] = { 0 };		//第i个物品的价值
	int w[100] = { 0 };		//第i个物品的重量
	int k[100] = { 0 };
	cout << "输入物品个数" << endl;
	cin >> n;
	cout << "输入背包容量" << endl;
	cin >> C;
	cout << "输入各个物品的价值" << endl;
	for (int i = 1; i <= n; i++)
	{
		cin >> v[i];
	}
	cout << "输入各个物品的重量" << endl;
	for (int i = 1; i <= n; i++)
	{
		cin >> w[i];
	}
	cout << "输入各个物品的数量" << endl;
	for (int i = 1; i <= n; i++)
	{
		cin >> k[i];
	}
	packet(n, C, v, w, k);
	while (1);

}

在这里插入图片描述

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 多重背包问题是指在给定容量和物品的价值和重量的情况下,如何最大限度地装入物品,使得总价值最大化的问题。它的模板是:给定N种物品和一个容量为V的背包,每种物品有无限件可用,每件物品的重量是w[i],其价值是v[i]。求解将哪些物品装入背包可使价值总和最大。 ### 回答2: 多重背包问题是一个经典的组合优化问题,它是在0/1背包问题的基础上进行了扩展。在多重背包问题中,每个物品可以被选择的次数不再是1次,而是有一个确定的上限k次(k>1)。我们需要选择一些物品放入背包中,使得它们的总体积不超过背包的容量,并且使得它们的总价值最大化。 要解决多重背包问题,可以使用动态规划的方法。首先,我们定义一个二维数组dp[i][j],其中i表示前i个物品,j表示背包的容量。dp[i][j]表示当只考虑前i个物品、背包容量为j时,能够获取的最大价值。然后,我们可以使用如下的状态转移方程来计算dp[i][j]的值: dp[i][j] = max(dp[i-1][j], dp[i-1][j-v[i]]+w[i], dp[i-1][j-2v[i]]+2w[i], ..., dp[i-1][j-kv[i]]+kw[i]) 其中,v[i]表示第i个物品的体积,w[i]表示第i个物品的价值,k表示第i个物品的可选次数。上述状态转移方程的意义是,我们可以选择不取第i个物品,或者分别取1次、2次、...、k次第i个物品,选择这些情况下的最大价值。 最后,我们可以通过遍历所有的物品和背包容量,计算出dp[n][m],其中n表示物品的个数,m表示背包的容量。dp[n][m]即为问题的解,表示只考虑前n个物品、背包容量为m时能够获取的最大价值。 综上所述,多重背包问题的解决方法是利用动态规划,通过定义状态转移方程和计算数组dp的值,找到问题的最优解。希望以上介绍对您有所帮助。 ### 回答3: 多重背包问题是常见的背包问题之一,与0-1背包问题和完全背包问题类似,但有一些区别。 在多重背包问题中,给定n个物品和一个容量为V的背包,每个物品有两个属性:重量w和价值v。同时,每个物品还有对应的个数限制c,表示该物品的数量最多可以选择c次。 我们需要选择物品放入背包,使得背包的总容量不超过V,同时物品的总价值最大。 多重背包问题可以用动态规划来解决。 我们可以定义一个二维数组dp,其中dp[i][j]表示前i个物品中选择若干个物品放入容量为j的背包时的最大价值。 根据多重背包问题的特点,我们需要对每个物品的个数进行遍历,并依次判断放入背包的个数是否超过c。 具体的状态转移方程为: dp[i][j] = max(dp[i-1][j-k*w[i]] + k*v[i]),其中0 <= k <= min(c[i], j/w[i]) 最后,需要注意的是多重背包问题的时间复杂度较高,为O(N*V*∑(c[i])),其中N是物品的数量,V是背包的容量,∑(c[i])表示物品的个数限制的总和。 总结而言,多重背包问题是在0-1背包问题和完全背包问题基础上的一种更复杂的情况,需要对每个物品的个数进行遍历和判断,采用动态规划求解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值