多重背包问题(c++)

方法一、暴力地将多重背包变为01背包

因为暂时没有学会一些好的优化算法,所以这里用暴力的方法解决多重背包问题,因为在这里多重背包与01背包的区别只是:多重背包每个物品可以有有限多件,而01背包每个物品只有一件,因此我们可以用一个for循环将其每件统计为一种形式,这样就把它化简为01背包问题。

#include<bits/stdc++.h>
using namespace std;
int num, WEIGHT;
int w[1001], m[1001], s[1001];
//分别为重量,价值,个数
int new_num;
//更新后的总行数 
int new_w[1001], new_m[1001];
//更新之后的重量,价值 
int F[1001];

void intput();
void new_input();
void initial(); 
void Knapsack();
 
int main(){
    cout<<"输入共有多少个物品:";
    cin>> num ;
    cout<<"输入背包总容量是多少:";
    cin>> WEIGHT;
    cout<<endl; 
    intput();
	new_num=0;
	for(int i=1; i<=num; i++)
	{
		new_num= new_num+s[i];
	}//计算现在有多少行    
	new_input(); 
	initial();
	Knapsack();
}
 
void intput(){
	w[0]=0, m[0]=0;
	for(int i=1; i<=num; i++){
	cout<<"请输入第"<<i<<"种的重量:" ;
	cin>> w[i];
	cout<<"请输入第"<<i<<"种的价值:" ;
	cin>> m[i];
	cout<<"请输入第"<<i<<"种的个数:" ;
	cin>> s[i];	
    }
    cout<<endl;   
}//输入每件物品的价值和重量

void new_input(){
	int k=1;
	for(int i=1; i<=num; i++){
		for(int j=s[i]; j>0; j--){
			new_w[k]= w[i];
			new_m[k]= m[i];
			k++; 
		}
	}
}//更新新的每个位置的重量和价值,将其简化为01背包 
 
void initial(){
	for(int j=0; j<=WEIGHT; j++)
	F[j]=0;
}//设置第零行全是零的初值 
 
void Knapsack(){
	int i,j;
	for(i=1; i<=new_num; i++){
		for(j=WEIGHT; j>=new_w[i]; j--){
			if(j<new_w[i])
			F[j]=F[j];
			else
			F[j]=max(F[j-new_w[i]]+new_m[i],F[j]);
			if(i==new_num&&j==WEIGHT)
			cout<<endl<<"所以背包的最大装载价值是:"<<F[j];
		}
	}
}//背包算法的主体内容 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 多重背包问题是指在给定容量和物品的价值和重量的情况下,如何最大限度地装入物品,使得总价值最大化的问题。它的模板是:给定N种物品和一个容量为V的背包,每种物品有无限件可用,每件物品的重量是w[i],其价值是v[i]。求解将哪些物品装入背包可使价值总和最大。 ### 回答2: 多重背包问题是一个经典的组合优化问题,它是在0/1背包问题的基础上进行了扩展。在多重背包问题中,每个物品可以被选择的次数不再是1次,而是有一个确定的上限k次(k>1)。我们需要选择一些物品放入背包中,使得它们的总体积不超过背包的容量,并且使得它们的总价值最大化。 要解决多重背包问题,可以使用动态规划的方法。首先,我们定义一个二维数组dp[i][j],其中i表示前i个物品,j表示背包的容量。dp[i][j]表示当只考虑前i个物品、背包容量为j时,能够获取的最大价值。然后,我们可以使用如下的状态转移方程来计算dp[i][j]的值: dp[i][j] = max(dp[i-1][j], dp[i-1][j-v[i]]+w[i], dp[i-1][j-2v[i]]+2w[i], ..., dp[i-1][j-kv[i]]+kw[i]) 其中,v[i]表示第i个物品的体积,w[i]表示第i个物品的价值,k表示第i个物品的可选次数。上述状态转移方程的意义是,我们可以选择不取第i个物品,或者分别取1次、2次、...、k次第i个物品,选择这些情况下的最大价值。 最后,我们可以通过遍历所有的物品和背包容量,计算出dp[n][m],其中n表示物品的个数,m表示背包的容量。dp[n][m]即为问题的解,表示只考虑前n个物品、背包容量为m时能够获取的最大价值。 综上所述,多重背包问题的解决方法是利用动态规划,通过定义状态转移方程和计算数组dp的值,找到问题的最优解。希望以上介绍对您有所帮助。 ### 回答3: 多重背包问题是常见的背包问题之一,与0-1背包问题和完全背包问题类似,但有一些区别。 在多重背包问题中,给定n个物品和一个容量为V的背包,每个物品有两个属性:重量w和价值v。同时,每个物品还有对应的个数限制c,表示该物品的数量最多可以选择c次。 我们需要选择物品放入背包,使得背包的总容量不超过V,同时物品的总价值最大。 多重背包问题可以用动态规划来解决。 我们可以定义一个二维数组dp,其中dp[i][j]表示前i个物品中选择若干个物品放入容量为j的背包时的最大价值。 根据多重背包问题的特点,我们需要对每个物品的个数进行遍历,并依次判断放入背包的个数是否超过c。 具体的状态转移方程为: dp[i][j] = max(dp[i-1][j-k*w[i]] + k*v[i]),其中0 <= k <= min(c[i], j/w[i]) 最后,需要注意的是多重背包问题的时间复杂度较高,为O(N*V*∑(c[i])),其中N是物品的数量,V是背包的容量,∑(c[i])表示物品的个数限制的总和。 总结而言,多重背包问题是在0-1背包问题和完全背包问题基础上的一种更复杂的情况,需要对每个物品的个数进行遍历和判断,采用动态规划求解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值