XDOJ杨辉三角 比较基础易懂的解法

#include<stdio.h>
int main()
{
	int n,i,j;
    int a[100][100];
    scanf("%d",&n); 
    a[0][0]=1;
    a[1][0]=1;
    a[1][1]=1;
    for(i=2;i<=n;i++)
    {
    	a[i][0]=1;
    	a[i][i]=1;
    	for (j=1;j<i;j++)
    	{
    		a[i][j]=a[i-1][j-1]+a[i-1][j];
    	}
    }
	for(i=0;i<n;i++)
	{
		for(j=0;j<=i;j++)
		{
			printf("%d ",a[i][j]);
		}
		if(i<n-1)
		printf("\n");
	} 
}

说说我走的弯路吧。

一开始未来保持数学上美好,我在两边加个零,想到时候不输出就行。但最后每步都非常麻烦......6以后会出现乱码。最后取了最简单粗暴的方法。当然要记得最后一行不能有回车,不然系统不认。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
【优质项目推荐】 1、项目代码均经过严格本地测试,运行OK,确保功能稳定后才上传平台。可放心下载并立即投入使用,若遇到任何使用问题,随时欢迎私信反馈与沟通,博主会第一时间回复。 2、项目适用于计算机相关专业(如计科、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业教师,或企业员工,小白入门等都适用。 3、该项目不仅具有很高的学习借鉴价值,对于初学者来说,也是入门进阶的绝佳选择;当然也可以直接用于 毕设、课设、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,可以在此代码基础上二次开发,进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎借鉴使用,并欢迎学习交流,共同探索编程的无穷魅力! 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
杨辉三角问题是一个经典的数学问题,也是计算机编程中常见的题目。在CSDN上,可以找到许多关于杨辉三角问题的多种解法。 一种常见的解法是使用动态规划。这种方法是基于杨辉三角的性质,每一行的元素都是上一行元素的相邻两个元素之和。因此,可以创建一个二维数组,用来存储杨辉三角的每个元素。从第二行开始,根据上一行的数据计算当前行的数据。通过不断迭代,最终可以得到完整的杨辉三角。这种方法的时间复杂度为O(n^2),其中n表示杨辉三角的行数。 另一种解法是使用组合数的性质。由于杨辉三角每一行的数字都代表了组合数,可以利用组合数的公式进行计算。根据组合数的性质,可以使用递归或循环的方式,依次计算每个元素的值。这种方法的时间复杂度比动态规划低,为O(n^2)。 除了以上两种常见的解法,还可以使用数学公式、递归等方法来解决杨辉三角问题。具体选择哪种方法取决于问题的要求和个人的编程习惯。在CSDN上,可以找到不同作者分享的各种解法,可以根据自己的需求进行选择和学习。 总之,在CSDN上可以找到杨辉三角问题的多种解法,可以根据不同的需求和编程习惯选择合适的解法。这些解法不仅可以帮助解决杨辉三角问题,也可以提供思路和方法来解决其他类似的数学和编程问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

洛溪霖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值