【动态规划part01】| 动规理论基础、509.斐波那契数、70.爬楼梯、746.使用最小的花费爬楼梯

文章介绍了动态规划的基本理论,包括它与贪心算法的区别,并通过LeetCode的509.斐波那契数、70.爬楼梯和746.使用最小花费爬楼梯这三个问题,详细阐述了动态规划的解题步骤,展示了如何利用动态规划求解递归和优化复杂度的方法。
摘要由CSDN通过智能技术生成

目录

🎈动态规划理论基础

✨动态规划的解题步骤 

🎈LeetCode509.斐波那契数 

🎈 LeetCode70.爬楼梯

🎈 LeetCode746.使用最小的花费爬楼梯 


🎈动态规划理论基础

贪心与动规的区别:

贪心:局部最优---全局最优

动规:每一个状态由上一个状态推导而来(有递推公式)

✨动态规划的解题步骤 

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

🎈LeetCode509.斐波那契数 

链接:509.斐波那契数

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n) 。

解法一:递归 

//递归法
    public int fib(int n) {
        if(n==0){
            return 0;
        }
        if(n==1){
            return 1;
        }
        return fib(n-1)+fib(n-2);
    }

解法二:迭代法 

public int fib(int n) {
        if(n==0){
            return 0;
        }
        if(n==1){
            return 1;
        }
        int first=0;
        int second=1;
        int third=0;
        for(int i=2;i<=n;i++){
            third=first+second;
            first=second;
            second=third;
        }
        return third;
    }

解法三:动态规划 

public int fib(int n) {
        if(n==0){
            return 0;
        }
        if(n==1){
            return 1;
        }
        // 1.确定dp数组及下标含义
        // dp[i]表示第i个斐波那契数列是多少
        int[] dp=new int[n+1];
        // 2.确定递推公式
        // dp[i]=dp[i-1]+dp[i-2]
        // 3.初始化
        dp[0]=0;
        dp[1]=1;
        // 4.确定遍历顺序
        for(int i=2;i<=n;i++){
            dp[i]=dp[i-1]+dp[i-2];
        }
        return dp[n];
    }

🎈 LeetCode70.爬楼梯

链接:70.爬楼梯 

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

ublic int climbStairs(int n) {
        // dp[i]表示爬i阶台阶用dp[i]种方法
        int[] dp=new int[n+1];
        // 递推公式:dp[i]=dp[i-1]+dp[i-2]
        // 初始化
        dp[0]=1;
        dp[1]=1;
        // 遍历
        for(int i=2;i<=n;i++){
            dp[i]=dp[i-1]+dp[i-2];
        }
        return dp[n];
    }

🎈 LeetCode746.使用最小的花费爬楼梯 

链接:746.使用最小花费爬楼梯

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

 public int minCostClimbingStairs(int[] cost) {
        // dp[i]表示爬i个台阶的最小费用
        int[] dp=new int[cost.length+1];
        // dp[i]=Math.min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        dp[0]=0;
        dp[1]=0;
        for(int i=2;i<=cost.length;i++){
            dp[i]=Math.min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[cost.length];
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值