项目1面试问题

目录

一、P0字典树

什么场景下适合使用字典树?

有限状态自动机FST了解吗?跟字典树有什么联系?

怎么理解的倒排索引?

二、P1缓冲池管理

可扩展哈希表如何扩容,如何缩容的?

LRU-K算法的应用场景?

LRU-K算法相对于LRU算法的优势有哪些?

缓冲池的执行流程

Page Cache的执行流程

什么情况下可以用O_Direct

如果页的大小为16KB,而磁盘只保证4KB的读写是原子的,刷脏页的时候只刷了部分页进程就崩溃了,怎么处理?

三、B+树

B+树和B树的区别?

为什么MySQL使用B+树而不使用B树?

B树的应用场景有哪些?

B+树和LSM-Tree的使用场景?LSM-Tree存在的问题有哪些?针对这些问题有什么解决思路?

B+树并发处理有哪些优化思路?

Blink树有什么特点?

四、查询执行

什么是火山模型?

为什么要使用火山模型?有什么优点?有什么缺点?缺点从哪些角度进行优化?

解释一下左连接和内连接?

怎么理解的数据库回表?

五、事务管理

2PL原理是什么?2PL存在什么问题?如何解决这些问题?

如何基于2PL实现的隔离级别?

什么是严格两阶段锁(strict-2PL)?

什么是强两阶段锁(strong-2PL)?

隔离级别有哪些?分别存在什么问题?

什么情况下会导致幻读,举个例子?

快照隔离存在什么问题?什么是写偏序问题,举个例子?

数据库是怎么实现一致性的?

项目中所涉及的几种锁介绍一下,怎么理解隔离级别和锁的关系?

为什么MySQL使用B+树而不使用B树?

死锁问题怎么解决?

MySQL怎么保证原子性的?

MySQL的默认隔离级别是什么?可重复读会有什么问题?既然可重复读有幻读问题那MySQL满足了隔离性吗?如果满足了幻读问题如何解决的?如果没满足如何保证的数据一致性?


一、P0字典树

  • 什么场景下适合使用字典树?

  • 字典树(Trie)适合处理需要高效地查找、插入和删除字符串的场景。以下是一些适合使用字典树的常见场景:
  • 搜索引擎:字典树可以用于构建关键词的索引,实现快速的模糊匹配和前缀匹配。
  • 单词拼写检查:通过将词典中的单词构建成字典树,可以快速地检查一个单词是否存在于词典中或者进行自动纠正。
  • 字符串匹配:字典树可以用于查找字符串中是否存在某个模式,例如在文本编辑器中进行关键词的高亮显示等。
  • 有限状态自动机FST了解吗?跟字典树有什么联系?

  • 有限状态自动机(Finite State Transducer,FST)是一种用于处理字符串的抽象机器模型。FST可以用于实现字符串的转换、识别和生成等操作。FST与字典树有以下联系:
  • 字典树可以看作是一种特殊的FST,它只能实现从输入到输出的单一映射,即输入是字符串,输出也是字符串。
  • 字典树和FST都可以用于字符串匹配和模式识别的应用,但FST在功能上更为通用,可以实现更复杂的字符串操作,如替换、重排序、拼接等。
  • 怎么理解的倒排索引?

  • 倒排索引(Inverted Index):倒排索引是实现“单词-文档矩阵”的一种具体存储形式,通过倒排索引,可以根据单词快速获取包含这个单词的文档列表。倒排索引主要由两个部分组成:“单词词典”和“倒排文件”。

    单词词典(Lexicon):搜索引擎的通常索引单位是单词,单词词典是由文档集合中出现过的所有单词构成的字符串集合,单词词典内每条索引项记载单词本身的一些信息以及指向“倒排列表”的指针。
    倒排列表(PostingList):倒排列表记载了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。
    倒排文件(Inverted File):所有单词的倒排列表往往顺序地存储在磁盘的某个文件里,这个文件即被称之为倒排文件,倒排文件是存储倒排索引的物理文件。

  • 倒排索引​​​​​​​

  •  

二、P1缓冲池管理

  • 可扩展哈希表如何扩容,如何缩容的?

  • 扩容:当哈希表中的元素数量接近负载因子(Load Factor)的上限时,可扩展哈希表会触发扩容操作。扩容通常包括创建一个更大的哈希表,并将所有元素重新哈希到新表中。扩容的过程需要重新计算元素的哈希值和重新插入到新表中,以确保元素均匀分布并减少哈希冲突。
  • 缩容:可扩展哈希表的缩容操作相对较少见。在一些特定的实现中,可以根据负载因子的下限来判断是否需要进行缩容。缩容时,会创建一个较小的哈希表,并将元素重新哈希到新表中。与扩容类似,缩容操作也需要重新计算哈希值和重新插入元素,以确保元素均匀分布。
  • LRU-K算法的应用场景?

  • LRU-K算法是一种基于最近最少使用(Least Recently Used)原则的缓存替换算法,相对于传统的LRU算法,它引入了"K"个历史访问次数的概念。LRU-K算法适用于需要考虑更多访问历史信息的场景,例如:

  • 数据库查询缓存:在数据库系统中,可以使用LRU-K算法来管理查询结果的缓存,考虑到某些查询可能具有周期性的访问模式。
  • Web服务器缓存:对于具有不同访问频率的网页资源,LRU-K算法可以更好地适应不同访问模式,提高缓存命中率。
  • 操作系统页缓存:在操作系统中,可以使用LRU-K算法来管理页缓存,以提高对常用数据的访问效率。
  • LRU-K算法相对于LRU算法的优势有哪些?

  • 更好的适应性:通过考虑历史访问次数,LRU-K算法可以更好地适应不同的访问模式,减少热点数据被淘汰的情况。
  • 缓解突发访问:LRU-K算法相比LRU算法可以更好地处理突发访问场景,因为它会考虑更多的历史访问次数,从而更好地保留短期内频繁访问的数据。
  • 灵活性:通过调整K的值,LRU-K算法可以根据实际需求进行灵活配置,适应不同场景下的访问模式。
  • 缓冲池的执行流程

  • 缓冲池是一种用于加速数据读写的技术,其执行流程一般包括以下步骤:

  • 请求数据:当应用程序需要读取数据时,首先会发起读取请求。
  • 缓冲池检查:缓冲池会检查是否已经缓存了请求的数据。
  • 命中缓存:如果请求的数据已经在缓冲池中,缓冲池会直接返回数据给应用程序,从而避免了磁盘IO操作。
  • 未命中缓存:如果请求的数据不在缓冲池中,缓冲池会触发磁盘IO操作,将数据从磁盘读取到缓冲池中,并返回给应用程序。
  • 更新缓冲池:如果应用程序进行了写操作,缓冲池会将更新的数据写入到缓冲池中,同时可能会延迟写回磁盘,以提高写入效率。
  • Page Cache的执行流程

  • Page Cache是操作系统中的一种缓存机制,用于存储磁盘上的文件页数据。其执行流程如下:

  • 应用程序读取文件:应用程序通过系统调用请求读取文件数据。
  • Page Cache检查:操作系统首先检查Page Cache中是否存在请求的文件页数据。
  • 命中Page Cache:如果文件页数据已经在Page Cache中,操作系统会直接从Page Cache中返回数据给应用程序,避免了磁盘IO操作。
  • 未命中Page Cache:如果文件页数据不在Page Cache中,操作系统会触发磁盘IO操作,将数据从磁盘读取到Page Cache中,并返回给应用程序。
  • 更新Page Cache:如果应用程序进行了写操作,操作系统会将更新的数据写入到Page Cache中,并可能延迟写回磁盘,以提高写入效率。
  • 什么情况下可以用O_Direct

  • O_Direct是一种文件访问模式,在某些情况下可以提供更高的IO性能。可以考虑使用O_Direct的情况包括:

  • 大规模数据传输:当需要传输大量数据时,使用O_Direct可以绕过Page Cache的缓存机制,减少数据的拷贝和缓存操作,从而提高数据传输的效率。
  • 低延迟要求:某些实时应用或对延迟要求较高的场景中,使用O_Direct可以减少数据访问的额外开销,提高IO响应速度。
  • 避免缓存污染:在某些情况下,文件的读写操作可能会导致Page Cache被占用,影响其他进程的性能。使用O_Direct可以避免缓存污染问题,确保系统整体性能。
  • 如果页的大小为16KB,而磁盘只保证4KB的读写是原子的,刷脏页的时候只刷了部分页进程就崩溃了,怎么处理?

  • 如果页的大小为16KB,而磁盘只保证4KB的读写是原子的,并且在刷脏页的过程中进程崩溃,可以采取以下处理方式:

  • 写日志:可以在写操作发生时,首先将写操作记录到日志中,确认日志的持久化后再执行实际的写入操作。这样即使进程崩溃,可以通过日志进行恢复和重放,确保数据的一致性。
  • 写时复制(Copy-on-write):可以使用写时复制技术,在写入操作时,先将原始页复制一份,并在副本上执行写操作。然后将副本刷写到磁盘,最后更新页表指向新的副本。这样即使进程崩溃,原始页的数据仍然是完整的,可以通过页表进行恢复。
  • 数据校验和:在每个页上附加一个校验和,用于校验页的完整性。在刷脏页之前,可以计算校验和并存储。当进程恢复时,可以比较校验和,检测到脏数据并进行处理。

三、B+树

  • B+树和B树的区别?

  • 结构:B树的每个节点既存储数据,又存储索引,而B+树的内部节点仅存储索引,数据只存储在叶子节点上。
  • 叶子节点:B树的叶子节点可以包含数据,而B+树的叶子节点只存储数据,通过链表连接起来。
  • 范围查询:由于B+树的叶子节点通过链表连接,范围查询时可以直接遍历叶子节点,而B树需要进行中序遍历。
  • 应用场景:B+树适合用于范围查询和顺序访问场景,而B树适合用于随机访问和查找单个记录的场景。
  • 为什么MySQL使用B+树而不使用B树?

  • 范围查询和排序:B+树的有序链表叶子节点可以支持高效的范围查询和排序操作,而B树需要进行中序遍历才能获取有序数据,性能较差。
  • 索引覆盖:B+树的非叶子节点不存储数据,使得索引更加紧凑,可以存储更多的键值对,提高了索引的效率。
  • 磁盘IO优化:B+树的有序链表叶子节点形成顺序访问,可以利用磁盘预读特性,减少磁盘IO次数,提高查询效率。
  • B树的应用场景有哪些?

  • 文件系统:B树可以用于文件系统的索引结构,用于加速文件的查找和访问。
  • 数据库系统:B树可以用于数据库系统中的索引结构,用于加速数据的查询和索引范围操作。
  • 文件管理系统:B树可以用于管理大规模文件的索引,实现高效的文件存取和检索。
  • B+树和LSM-Tree的使用场景?LSM-Tree存在的问题有哪些?针对这些问题有什么解决思路?

  • B+树和LSM-Tree的使用场景:

    • B+树:B+树适合于需要高效范围查询和排序的场景,如数据库的索引结构、文件系统的索引等。
    • LSM-Tree(Log-Structured Merge Tree):LSM-Tree适合于高写入负载的场景,如分布式存储系统、日志系统等,其中频繁的写入操作远远超过读取操作。

    LSM-Tree存在的问题:

    • 读放大:由于数据在内存和磁盘之间的多层结构,需要进行多次磁盘读取,导致读放大问题。
    • 写放大:频繁的写入操作会导致数据写入多个层级的结构,造成写放大问题。
    • 合并开销:由于LSM-Tree的特性,需要定期进行合并操作来清理过时和重复的数据,合并过程可能对系统性能造成影响。

    针对LSM-Tree的问题,可以采取以下解决思路:

    • 增加内存缓存:通过增加内存缓存,减少对磁盘的读取操作,降低读放大问题。
    • 批量写入:将多个写操作合并为批量写入,减少写放大问题。
    • 增量合并:采用增量合并策略,将合并操作分解为多个小的合并操作,减小对系统性能的影响。
  • B+树并发处理有哪些优化思路?

  • 锁粒度控制:通过调整锁粒度,使得并发读写操作尽可能不互斥,提高并发性能。
  • 读写分离:将读操作和写操作分开处理,使用读写锁或其他机制实现并发控制,以提高并发读取的吞吐量。
  • 乐观并发控制:使用无锁或基于版本的并发控制机制,如MVCC(多版本并发控制),以减少锁冲突和提高并发性能。
  • Blink树有什么特点?

  • Blink树是一种近似于B+树的索引结构,具有以下特点:

    • 无锁:Blink树采用无锁设计,减少了并发操作的冲突和开销。
    • 低内存占用:Blink树通过压缩指针的方式,减少了内存占用。
    • 异步IO:Blink树利用异步IO技术,减少磁盘IO等待时间,提高IO性能。
    • 高吞吐量:Blink树通过上述优化,提供了高吞吐量的查询和更新性能。
  • Blink树主要应用于内存数据库和分布式存储系统等高性能和高并发的场景。

四、查询执行

  • 什么是火山模型?

  • 火山模型,也叫迭代器模型,是查询执行时最常用的模型。

  • 火山模型是一种查询执行的模型,其中查询计划以火山喷发的形式流经各个操作符,最终输出结果。

  • 为什么要使用火山模型?有什么优点?有什么缺点?缺点从哪些角度进行优化?

  • 定义:火山模型,也叫迭代器模型,是查询执行时最常用的模型。

  • 特点:火山模型将整个SQL构建成一颗运算符树,每一个运算符节点实现一个Next()函数,每次调用这个函数将会返回算子产生的一行数据tuple。根节点循环向子节点调用Next()方法,直到数据拉取完毕。

  • 优点:可以单独地实现每个运算符,不需要关注其他运算符的实现逻辑。

  • 缺点:每次只计算一个tuple元组,不利于CPU缓存发挥作用。

  • 优化方式:编译执行模型和向量化执行模型。向量化模型每一个Next()函数返回的都是批量的数据而不只是一个元组。

  • 使用火山模型的目的:

    • 查询优化:通过对查询执行过程的建模和优化,提高查询性能和效率。
    • 查询执行计划生成:火山模型提供了一种生成查询执行计划的方式,指导数据库执行查询操作。
  • 火山模型的优点:

    • 灵活性:火山模型可以灵活地表示各种查询操作,包括选择、投影、连接、聚合等操作,使得查询优化和执行更加灵活和高效。
    • 易于优化:通过对操作符之间的数据流进行优化,可以选择最佳的执行计划,减少数据处理的开销,提高查询性能。
    • 可扩展性:火山模型可以扩展到支持并行查询执行,利用多核和分布式计算资源,提高查询处理的并发性能。
  • 火山模型的缺点和优化:

    • 内存开销:火山模型中的操作符可能需要维护大量的中间结果,导致内存占用较大。可以通过优化内存管理策略、使用流式处理等方式减少内存开销。
    • I/O开销:火山模型中的操作符可能会频繁地读取和写入数据,增加了I/O开销。可以通过合理的数据预取、缓存策略等方式减少磁盘访问次数,提高查询性能。
  • 解释一下左连接和内连接?

  • 左连接:左连接是指根据两个表之间的关联条件,返回左表中的所有记录和右表中匹配的记录。如果右表中没有匹配的记录,则返回NULL值。
  • 内连接:内连接是指根据两个表之间的关联条件,返回左表和右表中满足条件的记录。只返回两个表中都存在匹配的记录。
  • 怎么理解的数据库回表?

  • 数据库回表(Table Lookup)指的是在查询过程中,根据索引定位到数据所在的位置后,再根据数据所在位置进行一次磁盘访问来获取完整的数据记录。通常在索引无法覆盖查询的所有列时会发生回表操作。

    回表的理解:

    • 索引查询:首先通过索引定位到符合查询条件的数据所在的位置。
    • 回表操作:根据定位到的位置,进行一次磁盘访问,读取磁盘上的数据页,获取完整的数据记录。
    • 数据返回:将完整的数据记录返回给查询操作。

    回表的发生会增加额外的磁盘IO开销,对查询性能有一定影响。为了减少回表的次数,可以优化索引设计、调整查询条件、使用覆盖索引等方式。

五、事务管理

     隔离级别存在的问题:

      隔离级别和锁的关系:隔离级别定义了事务之间的隔离程度,而锁是实现隔离级别的一种机制。锁用于控制并发事务对数据的访问,确保事务的隔离性,不同的隔离级别会采用不同的锁策略和粒度,以达到对数据一致性的要求。

  • 2PL原理是什么?2PL存在什么问题?如何解决这些问题?

  • 2PL(Two-Phase Locking)原理是:事务分为两个阶段,第一阶段为加锁阶段,事务获取所需的锁;第二阶段为解锁阶段,事务释放已获取的锁。2PL原则确保了事务的串行化执行,避免了数据的不一致性问题。

  • 2PL存在的问题:

    • 死锁:2PL可能导致死锁,即多个事务相互等待对方所持有的锁而无法继续执行。
    • 阻塞:当事务在执行过程中持有锁时,其他事务需要等待,可能导致长时间的阻塞。

    解决问题的方法:

    • 死锁检测与回滚:实现死锁检测机制,一旦检测到死锁,选择一个或多个事务进行回滚,以解除死锁状态。
    • 超时机制:对等待锁的事务设置超时时间,超过一定时间则自动放弃等待,以避免无限阻塞。
  • 如何基于2PL实现的隔离级别?

  • 读未提交(Read Uncommitted):事务可以读取其他事务尚未提交的数据,可能导致脏读、不可重复读和幻读的问题。
  • 读已提交(Read Committed):事务只能读取已提交的数据,可以解决脏读的问题,但可能出现不可重复读和幻读的问题。
  • 可重复读(Repeatable Read):事务在执行期间看到的数据保持一致,可以解决脏读和不可重复读的问题,但仍可能出现幻读的问题。
  • 串行化(Serializable):事务串行执行,可以避免脏读、不可重复读和幻读的问题。
  • 什么是严格两阶段锁(strict-2PL)?

  • 是2PL的一种变种,要求事务在释放锁之前必须完成整个事务的提交或回滚,避免了事务释放锁后继续执行操作的问题。
  • 什么是强两阶段锁(strong-2PL)?

  • 是2PL的一种变种,要求事务在释放锁之前必须完成整个事务的提交,不允许回滚操作,避免了回滚造成的数据不一致性问题。
  • 隔离级别有哪些?分别存在什么问题?

  • 读未提交(Read Uncommitted)
  • 读已提交(Read Committed)
  • 可重复读(Repeatable Read)
  • 串行化(Serializable)
  • 脏读(Dirty Read):一个事务读取了另一个未提交的事务的数据。
  • 不可重复读(Non-repeatable Read):一个事务在多次读取同一数据时,得到的结果不一致。
  • 幻读(Phantom Read):一个事务在多次查询同一范围的数据时,得到的结果集不一致。
  • 什么情况下会导致幻读,举个例子?

  • 幻读的情况:当一个事务在查询某个范围内的数据时,另一个事务在该范围内插入了新的数据,导致第一个事务再次查询时出现了新增的数据,产生了幻读。

    示例:事务A查询学生表中年龄大于等于18岁的学生,得到结果为3个学生。此时,事务B插入了一个新的年龄大于等于18岁的学生,事务A再次查询时,结果变为4个学生,出现了幻读。

  • 快照隔离存在什么问题?什么是写偏序问题,举个例子?

  • 快照隔离存在的问题:

    • 写偏序问题:在快照隔离级别下,事务的提交顺序可能与实际提交的顺序不一致,导致数据的写偏序现象。

    示例:事务A修改了数据项X,事务B也修改了数据项X。根据快照隔离的特性,事务A和事务B都可以看到自己修改的结果,但是最终提交时,可能先提交了事务B,再提交事务A,导致数据项X的最终结果与实际操作的顺序不一致。

  • 数据库是怎么实现一致性的?

  • 数据库实现一致性的方式包括:

    • 事务:使用事务机制对一组相关操作进行原子性、一致性、隔离性和持久性的保证。
    • 锁机制:通过锁定数据对象来控制并发访问,保证数据操作的一致性和完整性。
    • MVCC(Multi-Version Concurrency Control):通过版本控制来实现并发事务的一致性,不同事务看到的数据版本不同。
    • 日志:数据库通过事务日志和重做日志来记录操作,以支持故障恢复和保证数据一致性。
  • 项目中所涉及的几种锁介绍一下,怎么理解隔离级别和锁的关系?

  • 共享锁(Shared Lock):允许多个事务同时读取同一资源,但不允许其他事务对该资源进行修改。
  • 排他锁(Exclusive Lock):一个事务获取排他锁后,其他事务无法获取该资源的任何锁,保证了排他访问。
  • 行级锁(Row-Level Lock):对数据库中的行进行加锁,粒度更细,减少了并发冲突。
  • 表级锁(Table-Level Lock):对整个表进行加锁,粒度较大,可能引发并发性能问题。
  • 为什么MySQL使用B+树而不使用B树?

  • B+树具有更好的磁盘读写性能:B+树的内部节点不存储数据,只存储索引信息,使得每个节点能够存储更多的索引项,减少磁盘IO次数,提高查询性能。
  • B+树有利于范围查询和排序操作:由于B+树的叶子节点形成有序链表,使得范围查询和排序操作更高效。
  • B+树更适合数据库的存储和索引:数据库中的数据通常较大,B+树的磁盘访问局部性和树的平衡性对于数据库的索引和查询操作更友好。
  • 死锁问题怎么解决?

  • 解决死锁问题的方法包括:

    • 死锁检测与回滚:通过死锁检测算法检测到死锁后,选择一个或多个事务进行回滚,解除死锁状态。
    • 超时机制:对等待锁的事务设置超时时间,超过一定时间则自动放弃等待,避免无限阻塞。
    • 死锁预防:通过合理的资源申请顺序来预防死锁的发生,避免事务之间相互等待对方所持有的锁。
  • MySQL怎么保证原子性的?

  • MySQL保证原子性的方式是使用事务(Transaction)机制。在事务中,多个操作被视为一个原子操作,要么全部执行成功,要么全部回滚。通过事务日志和回滚日志,MySQL能够确保事务的原子性,即使发生故障或错误,也可以回滚事务到原始状态。

  • MySQL的默认隔离级别是什么?可重复读会有什么问题?既然可重复读有幻读问题那MySQL满足了隔离性吗?如果满足了幻读问题如何解决的?如果没满足如何保证的数据一致性?

  • MySQL的默认隔离级别是可重复读(Repeatable Read)。

  • 在可重复读隔离级别下,事务可以多次读取同一数据,保证在事务期间读取到的数据是一致的。可重复读可以解决脏读(Dirty Read)和不可重复读(Non-repeatable Read)的问题,但仍然可能出现幻读(Phantom Read)的问题。

  • 尽管可重复读隔离级别下存在幻读问题,MySQL仍然满足了一定程度的隔离性。事务之间的数据是相互隔离的,每个事务在读取数据时都能看到一致的结果。然而,幻读问题的存在可能导致在同一个事务中多次查询同一范围的数据时,结果集不一致。

  • MySQL通过MVCC(Multi-Version Concurrency Control)机制来解决幻读问题。MVCC使用版本控制来实现并发事务的一致性,不同事务看到的数据版本不同。当一个事务执行读操作时,MySQL会根据事务的启动时间选择合适的数据版本,确保读取的数据是一致的,从而避免幻读的问题。

  • 如果MySQL的默认隔离级别无法满足应用的需求,可以通过设置更高的隔离级别,如串行化(Serializable)来解决幻读问题。串行化隔离级别下,事务之间是串行执行的,避免了幻读问题,但也会降低并发性能。

    此外,MySQL还提供了锁机制,如表级锁和行级锁,可以在某些场景下显式地使用锁来控制并发访问,保证数据的一致性和隔离性。锁的使用需要注意合理的粒度和加锁顺序,避免死锁和性能问题。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值