先查看自己的显卡支持的cuda版本,打开nvidia控制面板
然后
这个cuda支持版本就在这个页面
然后直接上官网CUDA Toolkit Archive | NVIDIA Developer建议选择12.1版本,比较老一点但也没太老的版本(因为pytorch支持的问题)
下完cuda以后安装过程网上很多随便找一个就ok
cuda装完了验证完了接着装cudnn这里我给两个网站一个是对应9.x版本的cuDNN Archive | NVIDIA Developer
另一个是对应8.x版本的
https://developer.nvidia.com/rdp/cudnn-archive
自己看好对应版本,按需求来,我装的9.0.0版本的cudnn
最后就是最难搞的pytorch因为你直接从官网下巨慢无比,所有我们先进入我们的conda环境配置一下镜像源
开始菜单点这个,进去以后输入
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
全输进去
然后去pytorch官网Previous PyTorch Versions | PyTorch找一个你心动的历史版本(看好对应的cuda不要下错了!!)复制命令到刚刚打开的页面就ok,验证的话就新建一个python文件写入这些
#查看pytorch版本
import torch
print(torch.__version__)
#查看是否是gpu版本
flag = torch.cuda.is_available()
print(flag)
#查看使用的GPU设备数量和名字
torch.cuda.current_device()
torch.cuda.device(0)
torch.cuda.device_count()
torch.cuda.get_device_name(0)
运行看输出的是不是
这样的,是就正确了
然后我建议py使用3.9版本的,因为到时候pytorch和transflow都可以用不然这俩只能分开到两个虚拟环境里面使用要来回切换
这个哥们的文章能解决你整出一堆烂摊子以后怎么解决
torch.cuda.is_available()返回false——解决办法_cuda available false-CSDN博客