torch.cuda.is_available()返回false——解决办法

本文详细介绍了如何正确安装PyTorch GPU版本,并解决了因使用错误镜像而导致的安装问题。通过官方渠道下载对应CUDA版本的PyTorch、torchvision及torchaudio等组件。

------2021.7.27更新------ 针对cp38做了适当解释,其余未作修改

(1)你的CUDA,cuDNN,torch版本是否对应?

首先判断自己是否适合使用GPU版本的torch,打开自己的cmd输入

NVIDIA-smi

查看自己的Driver Version ,CUDA Version
在这里插入图片描述
根据下图判断自己的CUDA版本是否符合要求(装的CUDA和cuDNN保持一致,版本号可以比10.2低)在这里插入图片描述
如果忘记自己的CUDA、cuDNN版本号,按这个博主的办法
进入官网https://developer.nvidia.com/rdp/cudnn-download ,先注册登录,查看自己的CUDA版本号对应自己的cuDNN,如下:我的是CUDA10.1,所以对应cuDNN8.0.5在这里插入图片描述
如果有对应不上的一个,先进行卸载,再安装新的。不着急的看B站视频从头安装
https://www.bilibili.com/video/BV1Rz411e7eJ?t=356
着急的小伙伴请看我的上一篇博客

(2) 问一下你自己是不是在清华镜像加速下载的!

如果是,你是不是天真的以为把官网的下载链接放在prompt上去掉 -c pytorch去掉就走了捷径,能更快的安装了?

No!无论你是重装多少次,都一样,torch.cuda.is_available()返回false

如果你遇到这个问题,不用担心你的步骤是不是错了,因为你被conda镜像安装给坑了。你以为下载的是GPU版本,其实镜像下载的是cpu版本你必须手动去官网用pip下载安装

如果不信,可以打开cmd试试这几句

python
import torch
print(torch.__version__)

运行结果

1.7.1+cpu

呵呵,恭喜你中招了!我也是在参考https://www.bilibili.com/video/bv1Rz411e7eJ的评论区才发现的。那么如果你的CUDA,cuDNN版本都对,只有Pytorch安装成了CPU的,那么先对它进行卸载,然后再安装

卸载方法:
找到刚才下载成功的三个东西,如果没在虚拟环境下下载Pytorch的话,他们在你的anaconda目录下的lib->site-packages,例如我的在D:\anaconda\Lib\site-packages,删除torch和

评论 278
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值