深度学习
文章平均质量分 85
python算法小当家
专注于机器学习及启发式优化算法的改进与研究,以创新为导向,兼顾理论与实践;需原创定制方案请联系后台
展开
-
10种超强图像特征提取算法Python代码实现
图像特征提取是计算机视觉和图像处理的关键步骤,因为计算机不认识图像,只理解数字。通过特征提取,计算机便可以理解图像含义,实现真正意义上的“视觉智能”。图像特征提取的目的是从中提取有用信息,以便后续的分析和应用。通过图像特征提取,可以实现数据降维、提高模型性能、简化计算、适用不同的应用场景等需求。本期小当家带来10种超强的图像特征提取算法,不管是实际应用还是作为论文创新都是非常适用的!!!原创 2024-06-28 15:30:07 · 1863 阅读 · 0 评论 -
一种基于图卷积创新的电场强度监测模型,原创未发表!!!
GCN通过在图结构上进行卷积操作,充分利用节点的邻接关系和特征信息,能够有效提取图数据的时空特征。本文提出的基于GCN和GRU的电场强度监测模型,结合GCN的空间特征提取和GRU的时间序列处理,实现了电场强度数据的高效监测和准确预测。本期推出一种创新的电场强度监测模型,通过图卷积神经网络与GRU的结合,实现对电场强度数据的高效处理和准确预测。预测准确性高:真实值与预测值对比散点图进一步验证了模型的高准确率,模型在测试集上的预测结果与真实值高度一致。一种基于图卷积创新的电场强度监测模型,原创未发表!原创 2024-06-21 07:04:08 · 664 阅读 · 0 评论 -
前沿创新 | KAN模型及其组合模型回归预测应用,Python预测回归全家桶更新
KAN一种全新的神经网络架构,与传统的 MLP 架构截然不同,且能用更少的参数在数学、物理问题上取得更高精度。本期将推出KAN及其组合模型(TCN-KAN、LSTM-KAN、Transformer-KAN、ResNet-KAN等等等)实现回归预测。KAN是2024年的最新研究成果,一经问世便受到众多关注,当前引用还比较少,早用早发文!!!原创 2024-06-18 01:33:55 · 3527 阅读 · 0 评论 -
发文无忧|双层分解+BiTCN-BiGRU-Attention的电力负荷预测
首先采用CEEMDAN将原始电力负荷数据分解成一组比较稳定的子序列,然后联合小波阈值法将含有噪声的高频分量去噪,保留含有信号的低频分量进行累加重构。然后利用VMD对去噪后的数据进行二次信号特征提取,得到一组平稳性强且含不同频率的分量。最后,使用BiTCN-BiGRU-Attention对各分量进行了预测,并将预测结果进行迭代,获得完整的预测结果。原创 2024-06-14 20:04:36 · 758 阅读 · 0 评论 -
2024最全注意力机制模型全家桶!永久更新!
关于注意力机制(Attention)的研究与应用越来越多,这并不是空穴来风。可以说,注意力机制就像人的大脑皮层,让我们的模型更加智能化。但是,这么多模型到底该怎么选择?今天小当家推出最全注意力机制全家桶,共10种结合注意力机制的模型,每种模型可以进行回归预测、时间序列预测,并且已经在真实数据上得到验证,代码注释也是十分清楚,适合新手!!!原创 2024-06-06 20:01:19 · 1428 阅读 · 0 评论 -
一文教会CNN-LSTM如何添加四种注意力机制, 一看就会!附完整免费python代码!!!
小伙伴们好,今天小当家带来如何添加四种注意力机制到CNN-LSTM中的教程,干货满满!有需要可免费获取!注意力机制是一种让模型在处理数据时能够“关注”到更重要信息的技术,它可以显著提升模型对数据的理解和处理能力。在深度学习模型中,特别是在处理序列数据(如文本、时间序列)或图像数据时,注意力机制发挥着重要作用。话不多说,下面开始我的分享!!!原创 2024-05-13 09:00:00 · 4987 阅读 · 1 评论 -
创新点!搭建BiTCN-CNN双流结构回归预测模型,实现高精度预测效果!!!
在具体实现中,BiTCN通过多层卷积层处理输入数据,每层卷积都通过不同的滤波器和激活函数来提取特征,同时使用扩张卷积(dilated convolution)来增加感受野,即无需增加参数的情况下扩大模型对输入数据的覆盖范围。这样,BiTCN提供的长期依赖信息和CNN捕获的短期局部特征可以同时用于最终的决策层,通常是一个或多个全连接层,以进行最终的预测。总体来说,这个模型在这组数据上的表现非常出色,具有很高的R²值(0.9929),说明模型能够解释大部分数据的变异性;python算法小当家,原创 2024-05-10 21:15:36 · 962 阅读 · 0 评论