融合创新!CNN-Transformer时间序列预测

声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类算法的家人,可关注我的VX公众号:python算法小当家,不定期会有很多免费代码分享~

CNN-Transformer实现完美融合

CNN层在特征维度上提取有价值的信息,补偿了Transformer编码器从多元数据集中挖掘信息的有限能力。同时在不同编码器层之间使用多头注意层能有效地提高预测精度。

本文将使用CNN-Transformer完成电力负荷多元时间序列预测,这个模型当前用的人还比较少,且不仅适用于电力负荷预测,如光伏预测、股价预测等时间序列预测也是可以用的。下面先给大家看实验结果,模型原理在后面!!!

CNN-Transformer时间序列预测

输入数据(部分展示)

date dry bulb temperature dew point temperature wet bulb temperature humidity price Load
2007/5/1 0:00 17.6 10.1 13.6 61 56.27 8014.32
2007/5/1 0:30 17.3 10.25 13.55 63 53.64 7872.69
2007/5/1 1:00 17 10.4 13.5 65 39.47 7693.98
2007/5/1 1:30 16.75 10.55 13.45 67 51.36 7569.55

数据集介绍:
date:日期
dry bulb temperature:干球温度
dew point temperature:露点温度
wet bulb temperature:湿球温度
humidity:湿度
price:电价
Load:负荷(输出)

数据划分

# 定义输入数据,输出标签数据的格式的函数 ,同时将数据转换模型可接受的3D格式
def create_dataset(datasetX, datasetY, look_back=1, T=1):
    dataX, dataY = [], []
    for i in range(0, len(datasetX) - look_back, T):
        a = datasetX[i:(i + look_back), :]
        dataX.append(a)
        dataY.append(datasetY[i + look_back:i + look_back + T, 0])
    return np.array(dataX), np.array(dataY)

create_dataset函数用于将输入数据和输出标签数据格式化,并转换成模型可接受的3D格式。该函数通过滑动窗口的方式从时间序列数据中创建特征和标签。

模型创建

model = create_model(
input_shape=(look_back, num_features),
num_blocks=3, embed_dim=32, dense_dim=64,
num_heads=4, dropout_rate=0.1, output_sequence_length=T)

create_model函数用于创建CNN-Transformer时间序列预测模型。参数说明如下:

  • input_shape:输入数据的形状,通常为三维元组,包含look_back和num_features。
  • num_blocks:模型中的块数,表示模型由多少个重复模块组成。
  • embed_dim:嵌入维度,表示嵌入层的输出维度。
  • dense_dim:密集层的维度,表示全连接层的节点数量。
  • num_heads:多头注意力机制的头数,表示每个注意力层的注意力头数量。
  • dropout_rate:Dropout的比例,表示在训练过程中随机丢弃神经元的比例,防止过拟合。
  • output_sequence_length:输出序列的长度,通常与预测步长T一致。

预测结果

### 使用CNNTransformer模型进行寿命预测 #### 方法概述 为了实现寿命预测,可以构建一种融合了卷积神经网络(CNN)与变换器(Transformer)架构的混合模型。这种组合旨在利用CNN在局部特征提取上的优势以及Transformer在全球依赖关系捕捉方面的强大能力[^1]。 #### 数据预处理 对于时间序列数据而言,合理的预处理步骤至关重要。这通常涉及标准化输入数值范围、填充缺失值,并可能还包括创建滑动窗口来形成训练样本。针对特定应用场景下的生命体征信号或其他相关指标作为输入特征集的一部分被纳入考虑之中。 #### 架构设计 - **卷积层**:通过一维或多维卷积操作自动学习来自原始传感器读数或其它连续测量值内的空间模式; - **转换机制**:引入自注意力机制允许模型关注不同时间段之间的相互作用而不受距离限制; - **编码解码结构**:采用类似于标准Transformers中的Encoder-Decoder框架,其中每个阶段都包含了多个子层用于逐步提炼高层次抽象表示并最终映射到预期输出——即剩余使用寿命估计。 ```python import torch.nn as nn class CNN_Transformer(nn.Module): def __init__(self, input_dim, hidden_size, num_layers, output_dim): super().__init__() self.cnn = nn.Sequential( nn.Conv1d(in_channels=input_dim, out_channels=hidden_size//2, kernel_size=3), nn.ReLU(), nn.MaxPool1d(kernel_size=2) ) self.transformer_encoder_layer = nn.TransformerEncoderLayer(d_model=hidden_size//2, nhead=8) self.transformer_encoder = nn.TransformerEncoder(self.transformer_encoder_layer, num_layers=num_layers) self.fc_out = nn.Linear(hidden_size//2, output_dim) def forward(self, x): conv_output = self.cnn(x.permute(0, 2, 1)) transformer_input = conv_output.permute(2, 0, 1) encoder_output = self.transformer_encoder(transformer_input) final_output = self.fc_out(encoder_output.mean(dim=0)) return final_output ``` #### 应用场景 该方法适用于各种工业设备健康监测系统中预防性维护策略制定过程里对机器部件失效前兆识别的任务需求之外,在生物医学研究领域同样有着广阔前景,比如基于生理参数变化趋势评估个体衰老程度或者疾病进展风险等方面的工作也都可以借鉴此类思路来进行探索和发展[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值