医疗知识图谱相关论文阅读

一、基于电子病历的临床医疗辅助诊断

现有的医学智能应用大多关注于医学影像处理和结构化数据预测阶段,对非结构化的电子病历文本数据的深度挖掘和辅助诊断仍然面临挑战。电子病历文本数据通常包含大量的自由文本描述,其中包含了医生的诊断、病史、症状描述等信息。这种文本数据的分析和理解要比结构化数据更复杂,因为它需要自然语言处理文本挖掘技术来提取有效信息。

电子病历采集成本低、数据实时。

论文1:融合知识图谱与深度学习的疾病诊断方法研究

年份:2020

出处:期刊 - 计算机科学与探索

作者:董丽丽;程 炯;张 翔;叶 娜

单位:西安建筑科技大学

医学意义:初步诊断病情描述的疾病

关键词:知识图谱;深度学习;疾病分类

主要方法:通过构建医疗知识图谱<疾病实体,关系(易发人群,临床表现),表现>,利用蕴含于医学知识图谱的经验知识指导深度神经网络模型的学习,构造知识驱动的神经网络模型,通过病情描述文本进行疾病分类。

具体内容:识别病情描述语句中的疾病特征词(词向量);通过结构化知识提取得到医学知识图谱(MedKG)中与疾病特征相关的实体和关系;利用知识图谱嵌入将其转化为低维连续的向量;将疾病特征词向量与知识实体词向量作为CNN输入,进行相似度计算得到分类结果。

1、医学知识图谱的构建 :<head,relation,tail> 头实体、关系、尾实体

例如:支气管炎——(易发人群,临床表现)——(吸烟人群,咳嗽)

2、知识图谱嵌入:知识图谱信息的语义表示(TransE)

3、卷积神经疾病诊断:疾病特征选择;结构化知识提取;知识驱动的神经网络。

  1. 疾病特征选择:对病情描述文本进行预处理和实体识别
  2. 结构化知识提取:实体相似性计算,提取实体与所有实体关系
  3. 知识驱动的神经网络;疾病分类模型训练

KGDeL 算法:同时加入实体向量上下文实体向量的卷积神经网络

引用量:24

参考文献:15

论文2:融合知识图谱与深度学习的奶牛疾病诊断方法研究(与论文1高度相关)

年份:2023

出处:硕士学位论文

作者:王浩栋

单位:东北农业大学

医学意义:通过奶牛疾病辅助诊断缓解高水平兽医人员的不足

关键词:知识图谱;深度学习

主要方法

知识图谱结构:<疾病实体,关系(易发人群,临床表现),表现>

奶牛病情描述文本为研究对象,以奶牛疾病领域知识图谱为基础,从奶牛病情描述文本中提取疾病特征关键词,通过实体链接,在奶牛疾病领域知识图谱中提取与其相关的疾病特征实体及其上下文实体,经过知识图谱嵌入转换为实体向量,输入深度学习模型,得到奶牛疾病诊断结果。

具体内容:

在论文1的基础上对实体识别、提取特征词进行改进。实体识别采用MHA和Attention机制;获取特征采用BiLSTM-CNN。

引用量:

参考文献:

论文3:基于电子病历知识图谱的隐含疾病信息挖掘与应用研究

年份:2022年6月

出处:博士学位论文

作者:尚勇

单位:浙江大学

医学意义:

现有的研究聚焦从电子病历数据中学习医学知识关系,通过知识图谱嵌入实现医学知识图谱补全,提供决策支持辅助。但是不能利用知识融合数据的优势。通过构建大规模电子病历知识图谱构建与隐含疾病信息挖掘,挖掘隐含信息,形成互补性临床决策。

主要方法:

知识图谱用统一的语义结构和标准化的本体表达医学概念和医疗数据,知识图谱临床决策支持能够提供白箱模式的临床建议,利用演绎式推理了提供可解释性强、推理过程可追溯的决策支持结果。

核心思想:通过医学知识图谱技术,有效利用电子病历数据中极有价值的临床信息,发挥医疗数据对临床诊疗的支持与辅助作用。

大规模电子病历知识图谱方法,构建覆盖电子病历中多领域疾病术语和知识的大规模知识图谱;通过语义化临床数据构建患者信息模型,利用知识图谱推理对电子病历数据中隐含的跨科室疾病信息进行挖掘分析,提供风险预警和诊疗建议。

具体内容:

1、大规模电子病历知识图谱构建方法;针对标准医学术语集/医学知识库/医学文献知识设计知识图谱语义框架,对电子病历数据涵盖的多科室医学知识和多领域医学概念进行规范化语义表达;通过自动化语义规则映射并开发语义映射工具 ,对多源医学知识元数据进行语义转换,构建为标准化的医学知识关系网络。

(顶层分类概念、语义映射规则、功能查询规则)

知识需求:标准化医学概念、临床数据结构化信息、医学知识关联

2、基于电子病历知识图谱的隐含疾病信息挖掘方法

语义转换,将分散的表结构数据构建成以患者为中心的患者信息模型,强化临床数据元素间的语义关系。演绎式语义推理划定需要关注的数据兴趣区域。

论文介绍了国内外研究中一系列医学知识的大规模知识图谱(构建方法、三元组的抽取;命名实体识别、关系抽取、知识图谱嵌入);目前国内主要进行中医医学知识图谱的研究(文本抽取、关系数据转换、数据融合)。介绍现有的研究主要是通过图谱推理、知识图谱嵌入、图神经网络等对医学知识图谱进行知识补全、路径搜索和知识关系预测,集中在语义表达、信息识别、图谱推理。

论文还介绍了:

知识图谱的构建方法(元数据语义映射、RDB2RDF、R2RML);

知识图谱推理技术

  1. 基于规则的知识图谱推理
  2. 基于表示学习的知识图谱推理(TransE、TransR、TransH)
  3. 联邦式知识图谱推理(保障原始数据的安全性)FedE

医学知识图谱评估方法

数据来源:

疾病诊疗相关标准化医学概念

领域:疾病和症状、临床检查、药物、医疗行为手术和护理

电子病历数据框架和结构性概念

OMOP CDM;UCUM

医学知识数据库

疾病知识、药物知识、文献知识

框架设计:

医学知识本体模型包括医学概念知识本体模型和医学文献知识本体模型。

基于电子病历知识图谱的隐含疾病信息挖掘方法

知识图谱——可解释性人工智能(XAI)让临床决策支持结果可溯源可理解,提升机器学习模型的可解释性。

构建:顶层本体+疾病局部本体

构建患者信息模型:

诊疗路径构建;语义推理规则

慢性肾病早期发现的疾病风险预警提前时间——潜伏肺结核的风险预警

论文4:基于电子病历的临床医疗大数据挖掘流程与方法

年份:2017

出处:期刊 - 大数据

作者:阮彤;高炬;冯东雷;钱夕元;王婷;孙程琳

单位:华东理工大学;上海曙光医院;万达信息股份有限公司

医学意义:以心衰和大肠癌两个慢性疾病为核心展开研究

关键词:医疗知识图谱;电子病历;疾病预测;电子病历(electronic medical record,EMR)数据

主要方法:数据采集,形成临床数据中心;基于临床数据中心构造面向特殊疾病的专病库。建立知识图谱,对结构化的字段,从原始的电子病历库中抽取;对于半结构化或非结构化文本,进行实体识别、知识抽取;数据库质量评估,判断是否能进行数据挖掘;临床医疗大数据挖掘应用(基于深度学习的疾病预测;基于倾向值匹配的疗效对比)

具体内容:

医疗知识图谱模式图:包含5个顶层概念:症状、疾病、药品、科室和检查。

症状包括中医症状、西医症状两个子概念;药品细分为中药和西药;

症状——(相关)——疾病——(相关)————科室

例如:一位“头部”患有“头痛”的患者同时患有“打喷嚏”“恶寒”等症状,则该患者需要去“内科”就诊,并进行“血检”和“测温”等相关检查。该患者最终被诊断为“夏季感冒”,并伴有“扁桃体发炎”,建议服用西药“阿司匹林”和中药“小柴胡”。

引用量:35

参考文献:33

论文5:融合知识图谱和深度学习方法的问诊推荐系统

年份:2021

出处计算机科学与探索

作者武家伟 ; 孙艳春

单位:北京大学

医学意义:构建了"疾病-症状"知识图谱,帮助用户根据症状自查

关键词:医疗知识图谱;深度学习;推荐系统

主要方法:近年来,随着互联网的普及和大数据分析等技术的发展,人们对移动医疗服务的需求越来越迫切,具体表现为根据症状确定自己患有的疾病以及根据疾病选择服务质量较好的医院及医生。为了解决上述问题,基于知识图谱和深度学习技术设计并实现了一种问诊推荐系统。基于互联网开放的医疗数据,构建了"疾病-症状"知识图谱,帮助用户根据症状自查,并以知识图谱嵌入模型训练知识图谱中实体的嵌入向量表示,根据向量的欧式距离相似度选取最相近的疾病实体丰富推荐选项,两者结合实现疾病诊断服务。同时,基于社交媒体的评论数据,结合现有的医疗服务质量评价指标,使用了深度学习的分析方法,自动给出医生的服务质量多维度的评分,为用户提供医生医院推荐服务。最后,通过构建测试集以及设计调查问卷等方式,验证了疾病诊断服务和医生医院推荐服务的准确率分别达到了74.00%和90.91%。

基于电子病历的医疗辅助诊断总结:

提供白箱模式的临床建议;重点在于如何进行演绎式推理;通过知识图谱推理进行疾病预测与诊疗。

二、基于医学影像报告的医学报告生成

论文1:基于Transformer的医学报告生成方法研究

年份:2023年5月

出处:硕士学位论文

作者:姜威

单位:杭州电子科技大学

医学意义:将医学影像的视觉特征通过计算机计算和分析转换成文本特征。

关键词:医学报告生成,跨模态对比学习,知识图谱,多标签分类

主要方法

通过跨模态深度学习方法实现对医学影像语义的理解,从而生成医学影像报告。

针对医学知识建模复杂1和长尾问题2,提出:

  1. 针对问题1,提出跨模态对比学习,通过文本特征指导视觉特征,解决提取图像特征难的问题;提出共享文本编码器模块(Transformer + LSTM);提出共享表达字典,增强跨模态对齐;
  2. 针对问题1和问题2,提出融合知识图谱和诊断信息的医学报告生成方法。新的文本解码器;新的知识图谱构建方法。

具体内容:

论文介绍了四种医学报告生成方式:基于主题的医学报告生成方式;基于先验知识的医学报告生成方法;基于Transformer的医学报告生成方法;基于跨模态对比学习的医学报告生成方法。

基于先验知识的医学报告生成方法

[15]知识驱动的编码、检索、释义的模型。模型效率低。

为了解决数据集标注信息的问题,提出无监督模型知识自动编码器[17],由预先构建的指知识图、知识分割编码器和知识驱动解码器组成。知识图作为共享的潜在空间,连接视觉和文本领域。编码器投影医学图像并报告到该潜在空间,解码器生成该空间中给定坐标的医疗报告。

Auto-Encoding Knowledge Graph for Unsupervised Medical Report Generation

基于Transformer的医学报告生成方法端到端的模型,输入序列与报告生成过程相关联。

[18]Chen记忆驱动的Transformer

[19]Bi-LSTM和注意力机制

[20]Miura基于Transformer提出两个指标

[21]Wang明确量化视觉不确定性和文本不确定性

Wang Y, Lin Z, Tian J, et al. Confidence-guided radiology report generation[J]. arXiv preprint arXiv:2106.10887, 2021.

[22]Nguyen状态感知机制,将潜在的视觉特征解耦为语义疾病嵌入和疾病状态

Nguyen H T N, Nie D, Badamdorj T, et al. EDDIE-Transformer: EnrichedDisease Embedding Transformer for X-Ray Report Generation[C].2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI). IEEE, 2022: 1-5.

[23]Li子引导矿价,细粒度视觉特征

Li J, Li S, Hu Y, et al. A Self-guided Framework for Radiology Report Generation[C].Medical Image Computing and Computer Assisted Intervention– MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part VIII. Cham: Springer Nature Switzerland, 2022: 588-598.

[24]Kong:直接集预测问题,一种基于Transformer的语义查询模型,生成一组语义特征来配合合理的临床问题,通过句子检索和选择组成报告。

TranSQ解读笔记 - 知乎 (zhihu.com)

代码:

GitHub - zjukongming/TranSQ: MICCAI 22 accepted paper “TranSQ: Transformer-based Semantic Query for Medical Report Generation“ for medical report generation

原文:

https://link.springer.com/epdf/10.1007/978-3-031-16452-1_58?sharing_token=_tEGWeQkLGjaUaWe5R_oC_e4RwlQNchNByi7wbcMAY4L66RnN6EH-Qpj4d-T4RVy5dCi1_nEMhKPJR9rvc8Bjf6h0DH-ncvD_yAq3GknsAquDISHLNl-l6cJL3sDgp5KmT1r5tsXkMqELv2Di-InXvjyQk-s6aoc-PsXl5wSx2Q%3D

基于跨模态对比学习的医学报告生成方法:

对比学习是一种自监督学习方式;

[25]Radford提出对比语言图像预训练CLIP(一种全新的对比学习方法)

Radford A, Kim J W, Hallacy C, et al. Learning transferable visual models from natural language supervision[C].International Conference on Machine Learning. PMLR, 2021: 8748-8763.

CLIP 将图像和文本分别使 用对应的编码器进行编码放在同一个维度,将同一个实例中的图像和文本所包含 的同样的特征信息作为锚点进行对齐。CLIP 通过这种方式将同一个实例的不同 模态的特征信息编码器进行预训练,使不同模态的编码器通过对比同一个实例中 不同模态特征信息的不同之处,从而学习不同特征信息间的共同特征,在后续的 任务中能取得更好的效果。Radford 等人为了验证 CLIP 的有效性,在多个任务 的多个模型中实验,均取得不错的效果。

26-28  Wang等人将CLIP预训练模型引入医学报告生成方法,提出了一种新的多粒度交叉模态对齐框架,用于广义医学视觉表示学习。

29  医学图像文本对比模型:Medical-VLBERT:知识对比预训练和医学报告生成。将训练分成两部分:知识对比预训练和医学报告生成。知识对比预训练通过对比学习让模型学习医学文本中的知识,而医学报告的生成式通过对医学图像的观察,利用所获得的知识生成专业的医学句子。

具体来说,首先输入图像通过卷 积神经网络将视觉信息被编码为空间特征;然后设计了两个独立的专用编码器, 将预定义的文本特征与视觉特征通过医学知识进行对比学习,从而产生相应的视 觉特征和文本特征。同时利用交替训练策略来最小化这两个不同模态特征之间的 差异,此外还采用共享语言解码器生成报告序列来减少不同模态特征之间的差异。

Liu G, Liao Y, Wang F, et al. Medical-vlbert: Medical visual language bert for covid-19 ct report generation with alternate learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(9): 3786-3797

本篇论文解决了医学报告生成任务中两个主要难点:

  1. 复杂医学知识建模:放射学影像中不同部位病变的表现方式、对于病变特征的完整表达、命名实体识别
  2. 长尾问题:大量数据集中在少数类型,健康实例远大于存在病变的实例

在端到端的Transformer上优化

通过跨模态对比学习(CCLF)解决复杂的医学知识建模;融合知识图谱和诊断信息的医学报告生成方法(FKGD)。

通过Transformer(长期依赖)+LSTM(短期依赖)提出新的报告生成文本解码器;

通过跨模态对比学习框架,两次对齐,利用文本特征对视觉特征的提取进行指导,解决提取医学影像特征难的问题。

通过共享表达字典,(对输入的特征进行重构修正,去除掉不同模态信息包含的噪点信息得到更鲁棒的特征表达)解决病变描述不准确的问题;

基于跨模态对比学习的医学报告生成方法(CCLF),提高长序列和命名实体识别的准确性。

引用量:

参考文献:78

医学报告生成方法研究

基于主题的医学报告生成方法

放射学影像报告中互不相关的句子对应一个或多个主题。

Jing B, Xie P, Xing E. On the Automatic Generation of Medical Imaging Reports[C].Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018: 2577-2586.

建立一个多任务学习框架,进行主题预测和段落生成

Guo D, Zhou W, Li H, et al. Hierarchical LSTM for sign language translation[C].Proceedings of the AAAI Conference on Artificial Intelligence. 2018, 32(1).

使用层次化LSTM模型生成报告,但是存在严重的长尾问题

Wang F, Liang X, Xu L, et al. Unifying relational sentence generation and retrieval for medical image report composition[J]. Proceedings of the IEEE Transactions on Cybernetics, 2020, 52(6): 5015-5025.

混合知识协同推理;过度依赖特征提取

Najdenkoska I, Zhen X, Worring M, et al. Variational topic inference for chest x-ray report generation[C].Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part III 24.

提出了一个关于自动生成报告的变分主题推理,引入了一组主题作为潜在变量, 通过在潜在空间中对齐图像和语言模式来指导句子的生成,其中主题是在条件变 分推理框架中推断的,每个主题控制报告中句子的生成,同时采用了一个视觉注意模块,使模型能够关注图像中的不同位置,并生成信息更丰富的描述。

基于先验知识的医学报告生成方法

先验知识(Priori Knowledge)先于经验的知识,不依赖于经验。

先验知识图谱:

为了解决数据集标注信息的问题,提出无监督模型知识自动编码器(KGAE),由预先构建的指知识图知识分割编码器知识驱动解码器组成。知识图作为共享的潜在空间,连接视觉和文本领域。编码器投影医学图像并报告到该潜在空间,解码器生成该空间中给定坐标的医疗报告。

论文:Auto-Encoding Knowledge Graph for Unsupervised Medical Report Generation

提出一种无监督模型知识图谱自动编码器(KGAE),利用独立的图像集和报告集训练。KGAE由预先构造的知识图谱、知识驱动的编码器和知识驱动的解码器组成。在没有图像和报告成对的前提下,缩小视觉和语言的差距,将知识图谱作为一个潜在的共享空间。知识驱动编码器可以将图像或报告作为查询,将其投影到潜空间中相应的坐标GI(红)和GR(绿)上;再引入解码器利用坐标GI和GR生成报告。训练阶段通过GR重构输入报告R来估计解码器的参数;在预测阶段,通过将GI输入训练好的解码器生成报告。
 

基于Transformer的医学报告生成方法

论文:TranSQ: Transformer-based Semantic Query for Medical Report Generation

Kong:直接集预测问题,一种基于Transformer的语义查询模型,生成一组语义特征来配合合理的临床问题,通过句子检索和选择组成报告。

Transformer-based Semantic Query

TranSQ解读笔记 - 知乎 (zhihu.com)

代码:

GitHub - zjukongming/TranSQ: MICCAI 22 accepted paper “TranSQ: Transformer-based Semantic Query for Medical Report Generation“ for medical report generation

原文:

https://link.springer.com/epdf/10.1007/978-3-031-16452-1_58?sharing_token=_tEGWeQkLGjaUaWe5R_oC_e4RwlQNchNByi7wbcMAY4L66RnN6EH-Qpj4d-T4RVy5dCi1_nEMhKPJR9rvc8Bjf6h0DH-ncvD_yAq3GknsAquDISHLNl-l6cJL3sDgp5KmT1r5tsXkMqELv2Di-InXvjyQk-s6aoc-PsXl5wSx2Q%3D

论文核心思想:句子看作是图像中特定区域的描述。把报告生成任务视为一个对候选句子的预测和选择问题。模型生成一组与图像被高度关注区域匹配的语义特征,根据这些语义特征通过句子检索和选择来组成最终的报告。

报告生成的两个挑战:不是标签,是连贯的包含多个句子的一段话;视觉可解释性。

TranSQ完成报告生成任务的整体流程:

Visual Extractor:ViT编码形成视觉特征;

Semantic Encoder:通过Semantic encoder将视觉特征生成语义特征(多头注意力层、交叉注意力层、FFN)

semantic queries作为Q、ViT输出的视觉特征作为K和V,采用交叉注意力层实现语义特征对视觉特征的查询。

Report Generator:根据语义特征检索输出被选择的句子。完成两个任务

  1. 生成候选句子:semantic feature经前馈神经网络转换成sentence embedding,检索数据库生成候选句子
  2. 预测句子的选择概率:通过多标签分类器来预测选择概率

评价指标:

参考文献:32

基于跨模态对比学习的医学报告生成方法

论文:Medical-vlbert: Medical visual language bert for covid-19 ct report generation with alternate learning

本文展示了多模态预训练模型在新冠诊断上的临床应用点。针对更加智能的自动生成医疗报告的辅助医疗需求,本文建议使用Medical-VLBERT模型来识别COVID-19扫描的异常情况,并根据检测到的病变区域自动生成医疗报告。该模型采用了一种交替的学习策略,即知识预训练和迁移。知识预训练记忆大规模的中国CX-CHR数据集中的知识,而迁移通过观察医学图像,将获得的知识用于COVID-19 CT数据集医疗句子生成。本文构建了包括368个中文医疗结论和1104个胸部CT扫描的COVID-19病例数据集。实验结果表明,Medical-VLBERT在中国COVID-19 CT数据集和CX-CHR数据集的术语预测和报告生成方面取得了最先进的表现。

三、融合知识图谱的药物推荐系统

论文1:融合医疗知识图谱的推荐系统研究进展

年份

出处

作者

单位

医学意义:结合医疗实践的推荐系统(药物推荐)

关键词:知识图谱;推荐系统;NLP;智能医疗

主要方法

医疗知识图谱架构

融合医疗知识图谱的推荐系统

结合医疗实践的基于路径的方法

自然地将可解释性引入推荐过程中,推荐结果可以从预定义的元路径中找到参考。

传统的用药推荐是由医生根据丰富的经验配合临床指南定义的基于规则模板匹配的;

SIET(star interactive enhanced-based transformer)模型 

利用基于元路径的方法从基于电子病历和医学医学知识图的大型异构网络中构造出疾病同质图,药物同质图和副作用同质图,然后将疾病、药物、副作用三个实体序列向量投射到低维稠密向量空间中,最后通过计算疾病表征和药物表征向量之间的余弦相似度得到推荐药物列表。

优点:利用注意力机制增强了嵌入向量的表示,提高了推荐的精准性;

缺点:增加的参数需要更多计算资源,推荐效率下降。

KGE-CLASH模型 

Nam 等人针对药物重定位问题提出KGE-CLASH模型,引入额外的知识充当辅助信息,改善数据稀疏性问题,同时利用调和函数进行标签传播,所得药物评分用来推荐。该模型的不足之处是需要专业人员结合领域知识来定义元路径的类型和数量。

EMR- based medical knowledge network,EMKN 41

Zhao 等人提出的通用临床决策支持方法使用医学知识网络(EMR- based medical knowledge network,EMKN)将问题描述为一个马尔可夫决策过程(Markov random field,MRF),可以来推理 症状-疾病之间的合理路径,通过为实体关系匹配相应的能量函数,一定程度上解决了先前方法需要手动定义元路径的问题。

BERT

Lan等人针对医学知识图谱实体和路径的稀疏性问题,通过 BERT(bidirectional encoder representation from transformers)的预训练模型对实体和路径文本语句进行编码,以增强实体和路径的嵌入,同时加入了注意机制用于组合多条路径的语义特征解决数据稀疏性问题。

结合医疗实践的基于嵌入的方法

采用知识图谱嵌入(knowledge graph embedding,KGE)算法将知识图谱中 包括实体和关系的三元组映射到低维连续的向量空间,保留知识图谱结构的同时,使其蕴含更多的潜在语义信息:

知识图谱嵌入的方法主要可以分为转移距离模型方法和语义匹配模型方法。

转移距离模型(translational distance):基于距离的评分函数,学习从头实体到尾实体的空间变换关系(TransE、TransR)

语义匹配模型(semantic matching):过基于相似性的评分函数,直接运用神经网络对语义相似度进行计算(RESCAL[45] 、DistMult[46] 等模型)。

在DIT领域(药物-靶标相互作用)中,可以通过KGE方法进行实体和关系的嵌入。药物重定位。

基于电子病历(EMRs)的药物推荐系统很大程度上可以帮助医生做出更好的临床决策:

Gong 等人提出的 SMR(safe medicine recommendation)模型:

把推荐用药问题转换为预测患者与药 物之间连接的问题,通过从电子病历和医学知识图中构 建大型异构图,利用 TransR方法构建特定关系矩阵,桥接的不同向量空间中的实体和关系对患者进行建模,并最小化潜在的药物不良反应做出安全用药的建议。但由于模型结构过于复杂,很难在临床实践中部署

Cao 等人提出的 K-TUP(knowledge-enhanced translation-based user preference)模型:

针对知识图谱不完整的问题,通过利用转移距离模型TransH[44] 将知识图谱补全任务和推荐任务联合部署在同一模型中,实现了两任务的相互增强。在此基础上Sousa等人[54] 通过把知识图谱作为BiOnt模型[55] 的外部实体信息进行生物医学关系提取,再结合K-TUP[24] 补全了生物医学实体之间的 关系,提高了推荐的准确度。

结合医疗实践的基于融合的方法

将实体和关系的嵌入向量表示和连通性信息结合;以知识图谱的链接结构为指导。

KGCN模型

KGCN-LS模型

Ripp-MKR模型

题 Mao 等 人[58] 提出的MedGCN(Medicine GCN)模型,创新性地将 多个医疗实体之间复杂的关联融入到异构医疗图中,通 过引入交叉正则化策略,加强了多任务之间的交互,减 少了多任务训练的过拟合。因为该模型更加侧重于普 适性的应用场景,因此针对特定的推荐场合性能较为普 通。Yang 等人[59] 提出的 KDHR(knowledge-driven herb recommendation)模型将中医药知识图谱作为附加的辅 助信息,通过 GCN 对症状和草药之间的潜在关系进行 建模,并使用多层感知器(MLP)集成从 GCN 的每一层 获得的不同层次的信息,以此获得信息丰富且噪声较小 的节点特征表示。但因为中医药知识图谱中的草药类 别不平衡导致模型性能无法达到最优。

引用量:

参考文献:61

四、针对肺结核患者的医疗知识图谱研究

肺结核疑似病例:因症就诊;主动筛查;健康体检(胸片或CT)

肺结核如何确诊:胸部影像学检查

新的结核病诊断标准将肺结核分为:1.原发性肺结核;2.血行播散性肺结核;3.继发性肺结核;4.气管、支气管结核;5. 结核性胸膜炎。

结核病的分期:初次感染;潜伏感染;活动性疾病

针对因症就诊的患者:通过病历和病情描述进行演绎推理,判断是否是肺结核疑似病例

在确诊肺结核阶段(胸部影像学检查):胸部影像报告+病情描述文本进行医学报告生成

确诊后的诊疗方案:给出推荐药物和诊疗方案

五、大语言模型LLM

解决涉及多个推理步骤的复杂任务(思维链 CoT),通过中间推理步骤的提示机制来解决推理任务。阐述推理过程

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值