无人机数据集UAVDT转yolo数据集格式

近期用到无人机UAVDT,需要在yolo上进行训练,下载后分为多目标和单目标两种,本次使用多目标数据进行训练,即对UAV-benchmark-MOTD_v1.0中的xx_gt_whole.txt真值文件进行修改。

查看了几篇修改过程:将UAVDT数据集格式转成VOC、YOLO格式(最终版)_uavdt数据集没标签-CSDN博客

将UAVDT数据集转化成YOLO样式-CSDN博客

都要先转换成COCO再到VOC最后再到yolo,不太适用于我,于是根据他们的教程进行修改,以下是我的转换过程:

1.处理数据集中的图像和相应的ground truth标签,将xx_gt_whole.txt按照图像文件的顺序保存到相应的目录中。生成目录如下:

def process_dataset(data_path):
    data_num = 0
    for name in os.listdir(data_path):

       # print('name:', name)
        data_num += 1

        img_path = os.path.join(data_path, name)
        gt_path = os.path.join(data_path.replace('UAV-benchmark-M', 'UAV-benchmark-MOTD_v1.0/GT'), name + '_gt_whole.txt')
        save_gt_path = os.path.join(data_path, name, 'gt')

        photo_count = 0
        for file_name in os.listdir(img_path):
            _, extension = os.path.splitext(file_name)
            if extension.lower() in ['.jpg', '.jpeg', '.png', '.gif', '.bmp']:
                photo_count += 1
        print("Total photos:", photo_count)

        if not os.path.exists(save_gt_path):
            os.makedirs(save_gt_path)

        with open(gt_path, 'r') as file:
            lines = file.readli
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值