常微分方程初值问题数值方法及其MATLAB实现(1)

含有未知数的导数(或微分)的方程成为微分方程,其又分为常微分方程和偏微分方程两类。第七章开始我们讲述了Euler方法及其改进。起初显式欧拉公式之后又冒出来一个隐式欧拉公式就令我十分头大(后者依赖于前者,且二者精度相当),但是接着王晓东老师解释了稳定性差异(明白了)。这二者均为一阶方法。后面所讲梯形公式方法和Euler-梯形预估校正公式为二阶方法。而阶数的规定又和奇葩截断误差有关(晕)。

因为方法的阶数越大,所得结果的精度越高,所以研究者们始终追求着阶数较大的方法的应用,同时也要考虑计算的简便。在这样的比拼中,繁琐的Taylor级数展开法败给Runge-Kutta方法(在这里简要介绍一下Runge-Kutta,千万不要误解成这是一个老外的名字,事实上这是两个不同的老外)

ode便是MATLAB中专门用于求解微分方程的功能函数,采取的算法即为Runge-Kutta算法。实现过程也不难。首先打开MATLAB,然后新建——函数,使用function 函数进行定义所给出的微分方程。Crtl+S选择好途径进行保存,一定注意保存的文件名要和你的函数名字一样(笔者一开始就在这个地方吃了大亏,持续报错搞崩心态)。接下来在窗口内clc先清空。clear all; close  all; tspan=[1 0];(确定函数范围)t_1=0;(赋初值)[h,t]=ode45(@test_data, tpan,t_1);等等等,你也可以选择绘图出来。

以上内容均为4月7日计算方法课上笔记整理及课后资料查阅所得,需要参考或引用请自便,引用时标明出处即可(2022年4月7日于西北工业大学)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西工大里的河南烩面

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值