matlab求解常微分方程初值问题的三类方法

 求微分方程初值问题:y''-(1-y^2)y'+y=0,y(0)=2,y'(0)=0

我们以二阶微分方程为例来介绍这三种方法的使用,当然,第一种方法——四阶龙格-库塔法实际上就是自己手动编写程序来求解,而第二种方法——ode45就是matlab上的也是用四阶龙格-库塔法实现的更完备的方法,都是数值解法,第三种方法是微分方程的符号解法,是精确解法


讨论一阶微分方程

\frac{dy}{dt}=f(t,y)

初始条件为y(t_0)=y_0,其中y和f可以是矢量(即微分方程组)。

所谓的数值积分,是解决在初值已知的情况下,对f(t,y)进行近似积分的问题,通常称为微分方程的初值问题。

对上述一阶微分方程两边进行积分:

y(t)=y(t_0)+\int_{t_0}^t {f(\tau,y)} \,{\rm d}\tau

在离散的时间下:t=t_0,t_1,t_2,\cdots,t_m,t_{m+1}

y(t_{m+1})=y(t_0)+\int_{t_0}^{t_{m+1}} {f(\tau,y)} \,{\rm d}\tau=y(t_m)+\int_{t_m}^{t_{m+1}} {f(\tau,y)} \,{\rm d}\tau

注:如果要求解的是高阶微分方程,可降阶为一阶微分方程组。如二阶微分方程y''(t)=f(t,y)

可降阶为:

y_1'=y_2

y_2'=f(t,y_1)

也就是把原来二阶的y看成y_1y_1''(t)=f(t,y_1),将y_1一阶导数令为y_2y_2'=f(t,y_1)


 步长h=t_{m+1}-t_m

单步法:只由前一时刻的数值y(t_m)就可以求得后一时刻的数值y(t_{m+1}),是一种自启动算法。(如欧拉法、龙格-库塔法等)

多步法:计算y(t_{m+1})时要用到t_m,t_{m-1},t_{m-2},\cdotsy的数值,这种方法为多步法,不是自启动算法。(如Adams法)

截断误差:分析数值积分的精度常用泰勒级数,设y_m准确,则y_{m+1}:

y(t_{m+1})=y(t_m)+y'(t_m)h+1/2! y''(t_m)h^2+\cdots+1/r!y^{(r)}(t_m)h^r+o(h^{r+1})

若只取前几项之和来近似计算y_{m+1},这样产生的误差称为截断误差,比如取到1/k! y^{(k)}(t_m)h^k,就称具有k阶精度,即该方法是k阶的。


一、四阶龙格-库塔法

在看四阶之前,先了解一下二阶的龙格-库塔法。

二阶,即泰勒展开到二阶:

y(t_{m+1})=y(t_m)+hy'(t_m)+\frac{h^2}{2}y''(t_m)

 将

y'(t_m)=f(t_m,y_m),y''(t_m)=(\frac{\partial f}{\partial t} +f\frac{\partial f}{\partial y})|_{t=t_m}

代入上式,然后假设微分方程的解可写成如下形式:

y_{m+1}=y_m+(a_1k_1+a_2k_2)h

k_1=f(t_m,y_m)

k_2=f(t_m+b_1h,y_m+b_2k_1h)

取不同的a_1,a_2,b_1,b_2可以得到不同的二阶龙格-库塔法。


那么四阶龙格-库塔法类似:

y_{m+1}=y_m+\frac{h}{6}(k_1+2k_2+2k_3+k_4)

k_1=f(t_m,y_m)

k_2=f(t_m+h/2,y_m+k_1h/2)

k_3=f(t_m+h/2,y_m+k_2h/2)

k_4=f(t_m+h,y_m+k_3h)

具体计算时,由y_0可以求得y_1,由y_1可以求得y_2,……,直到所要求的值。

附上matlab代码框架:

首先定义一阶微分方程组 :

function func=f(t,y)
f1=y(2);
f2=(1-y(1)^2)*y(2)-y(1);
func=[f1;f2];
end

然后是龙格-库塔算法:

function [t,Y]=RKutta(Delta,Y0,tm)
% Delta为步长,Y0为初始值,是一个列向量,tm是计算
Y(:,1)=Y0;
k=1;
t=0:Delta:tm;
t_size=length(t);
for i=1:t_size
    z1=f(t(k),Y(:,k));
    z2=f(t(k)+Delta/2,Y(:,k)+z1*Delta/2);
    z3=f(t(k)+Delta/2,Y(:,k)+z2*Delta/2);
    z4=f(t(k)+Delta,Y(:,k)+z3*Delta);
    Y(:,k+1)=Y(:,k)+Delta*(z1+2*z2+2*z3+z4)/6;
    k=k+1;
end
Y=Y(:,1:end-1); % 其实求得的是0到20+Delta秒的y
end

 设定初值和步长,进行计算:

Delta=0.001;
Y0=[2;0];
tm=20;
[t1,y1]=RKutta(Delta,Y0,tm)

将y随时间变化规律画出来:


二、ode45

matlab提供了好几种求解器,其中最常用的就是ode45求解器。

其最简单的使用方法是:[t,y] = ode45(odefun,tspan,y0)

同样首先定义求解的微分方程组odefun:

function dydt = vdp1(t,y)

dydt = [y(2); (1-y(1)^2)*y(2)-y(1)];

end

 求解时间范围tspan=[0,20],初值y0=[2;0]

[t,y] = ode45(@vdp1,[0 20],[2; 0]);

 求得的是y随着t变化的序列。

同样画出图像:

此外,如果积分区间不定,但知道需要在y减小到-1.5时停止积分,就需要使用ode45的事件描述

function [position,isterminal,direction] = myEventsFcn(t,y)
position = y(1)+1.5; % 该式等于0即事件发生(即y(1)=-1.5)
isterminal = 1;  % 当事件多于1个时,设置当某个事件发生时停止积分(为1)
direction = -1;   % 值为 -1 时仅在事件函数递减的位置查找零

 ode45的事件设置:

options=odeset('events',@myEventsFcn);
[t2,y2] = ode45(@vdp1,[0 20],[2; 0],options);

 此时画出图像为:


三、dsolve

符号解也是精确解,然而大多数方程并不能求得解析解,比如本例中的这个二阶微分方程,用此方法求解会得到报错:

syms t y(t)
eqn=diff(y,t,2)-(1-y^2)*diff(y,t,1)+y==0;
Dy = diff(y,t);
cond=[y(0)==2,Dy(0)==0];
ySol(t)= dsolve(eqn,cond)

所以还是需要用数值方法去求解。

这里举一个可以求解精确解的例子:

syms t y(t)
eqn=diff(y,t,2)-3*diff(y,t,1)+2*y==1;
Dy = diff(y,t);
cond=[y(0)==1,Dy(0)==0];
ySol(t)= dsolve(eqn,cond)

  • 28
    点赞
  • 67
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值