大语言模型入门之Transformer

这个系列用于记录我的大语言模型学习过程


前言

        现在的很多大语言模型通常是基于Transformer架构,这篇用于介绍Transformer架构。由于之前是学三维重建的,也学习过了Transformer,网上也有很多transformer的详细介绍,这里主要是做个回顾。


一、Transformer是什么?

        在自然语言处理(NLP)领域,Transformer已成为一种革命性的模型架构。Transformer是一个基于自注意力机制的深度学习模型,最初由Google在2017年提出,其使用 Self-Attention 结构取代了在 NLP 任务中常用的 RNN 网络结构。相比 RNN 网络结构,其最大的优点是可以并行计算。应用于自然语言处理领域,特别是在机器翻译任务上取得了显著的成果。其核心思想是利用自注意力机制来捕捉序列中的依赖关系,从而实现对序列数据的建模。

        Transformer模型主要由编码器和解码器两部分组成,每个部分都包含多层堆叠的自注意力机制和前馈神经网络。通过自注意力机制,模型可以计算序列中每个位置与其他位置之间的相关性,从而捕捉到序列中的长距离依赖关系。这种机制使得Transformer在处理自然语言等序列数据时具有出色的性能。

        除了自然语言处理领域,Transformer模型也被广泛应用于其他领域,如语音识别、图像识别等。其强大的建模能力和灵活性使得它成为当前深度学习领域的重要模型之一。

        Transformer 的整体模型架构如下图所示:

二、核心组件

1.自注意力机制

        自注意力机制是Transformer的核心。简单来说,自注意力就是让序列中的每个位置都去关注序列中的其他位置,从而计算出一种加权的表示。这种机制允许模型在处理一个词时需要同时参考其他词,从而更好地捕捉序列中的长距离依赖关系。

        具体来说,对于输入序列中的每个词,自注意力机制都会计算它与序列中其他词的相关性,并根据这些相关性来更新这个词的表示。通过这种方式,模型可以捕捉到词与词之间的关系,从而更好地理解整个序列的含义。

        以句子“我喜欢吃苹果”为例,在自注意力层,每个词都会“注意”到句子中的其他词。比如,“喜欢”这个词会注意到“我”、“吃”和“苹果”。

        对于每个词,模型会计算一个注意力分数,表示该词与其他词的关联程度。比如,“喜欢”可能对“我”和“苹果”有更高的注意力分数,因为它们在语义上更相关。

        这些注意力分数被用来加权输入词的嵌入,生成新的表示,这样“喜欢”的新表示就会更多地反映它与“我”和“苹果”的关系。

2.多头注意力

        为了捕捉不同类型的依赖关系,Transformer引入了多头注意力(Multi-Head Attention)。它将自注意力机制扩展到多个“头”,通过在不同的线性变换上并行地执行多个自注意力,每个头都可以学习不同的注意力权重。这大大提高了模型的表达能力和泛化能力。

3.编码器与解码器

        Transformer由编码器和解码器两部分组成。编码器负责处理输入序列,将其转换为一系列向量表示;而解码器则根据这些向量表示生成输出序列。这种结构使得Transformer能够灵活地处理各种长度的序列。

        编码器负责理解输入序列,并将其转化为一种高层次的表示。每一层编码器都包含两个主要的子层:一个自注意力层和一个前馈神经网络层。这两个子层之间都使用了残差连接和层归一化,以帮助模型更好地学习和优化。

        解码器的任务是根据编码器的输出,生成对应的输出序列。与编码器类似,每一层解码器也包含两个主要的子层:一个自注意力层和一个编码器-解码器注意力层。此外,解码器还有一个前馈神经网络层。这两个注意力层和一个前馈神经网络层之间,也都使用了残差连接和层归一化。

4.位置编码

        由于Transformer没有像RNN那样的隐含状态来编吗序列的顺序信息,因此需要一种机制来处理序列中元素的位置关系。为此,Transformer引入了位置编码,它是一个与输入向量维度相同的矩阵,用于表示序列中每个元素的位置信息。

        当我们有一个句子,如“我喜欢吃苹果”,首先需要将每个词嵌入到一个高维向量中。比如,“我”可能被嵌入为[0.2, 0.5, -0.1, ...],“喜欢”被嵌入为另一组数值,以此类推。

        由于Transformer不具备RNN的循环特性,它需要一个额外的机制来理解词序。这就是位置编码的作用。位置编码是一种与输入嵌入维度相同的矩阵,它为每个词提供了位置信息,确保模型能够区分序列中元素的位置关系。

5.残差连接与归一化

        为了减轻深度神经网络训练过程中的梯度消失和爆炸问题,Transformer采用了残差连接(Residual Connections)和层归一化(Layer Normalization)技术。这些技术有助于模型更快地收敛并提高训练稳定性。

三、实现过程

1.准备输入

        首先,将输入序列转换为词嵌入向量,并为每个词添加位置编码,以确保模型能够理解词序。

2.初始化参数

        生成查询(Query)、键(Key)和值(Value)矩阵。这些矩阵是通过词嵌入与特定的权重矩阵相乘后创建出来的。

这个具体过程可以参考:Transformer 模型详解_transformer模型-CSDN博客

                                        自然语言处理Transformer模型最详细讲解(图解版)-CSDN博客

这两篇都写得非常具体,这里也没有必要再赘述

3.计算注意力分数

        通过计算查询与键的点积来得到注意力分数,这个分数表示了每个词对其他词的关注度。然后,将这些分数除以一个缩放因子(通常是键向量维度的平方根),以稳定梯度,并通过softmax函数进行归一化处理。

4.加权求和

        将每个值向量乘以对应的softmax分数,然后进行求和,得到自注意力层的输出。这个过程实现了对输入序列中每个词的加权关注。

5.多头注意力的实现

        在多头注意力机制中,上述过程会重复多次(每个头一次),每次使用不同的查询、键和值权重矩阵。这样,每个头都能学习到不同的注意力表示。最后,将这些头的输出拼接起来,并经过一个线性变换得到最终的输出结果。


总结

        Transformer模型的出现,极大地推动了NLP领域的发展。它不仅在机器翻译任务上取得了显著的成果,还被广泛应用于文本生成、文本摘要、语音识别、图像识别等多个领域。许多知名的预训练语言模型,如BERT、GPT和T5等,都是基于Transformer架构构建的。这些模型在各项NLP任务中都取得了领先的性能,展示了Transformer强大的建模能力和灵活性。 随着技术的不断发展,我们可以期待更多基于Transformer的创新与应用。例如,结合预训练语言模型(如BERT、GPT等)的Transformer将进一步提高自然语言处理任务的性能。同时,Transformer在计算机视觉领域的应用也将为图像分类、目标检测等任务带来新的突破。

        

  • 12
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值