数据挖掘-灰色关联分析方法|关联分析实战

本文描述了作者在数据挖掘课程中使用Kaggle的YouTube统计数据进行关联分析的过程,包括数据预处理(如删除缺失值、归一化),以及应用灰色关联分析来探索哪些频道属性与订阅者数量高度相关。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在学校学习数据挖掘课程,老师布置的大作业,自己选择了数据集进行分析,写下来做一个分享和记录,如有问题,请指正!

一、数据集选择

在kaggle选择了一个2023年全球YouTube统计数据,链接如下:

Global YouTube Statistics 2023 (kaggle.com)icon-default.png?t=N7T8https://www.kaggle.com/datasets/nelgiriyewithana/global-youtube-statistics-2023

二、关于数据集

数据集包含了YouTube订阅者最多的部分频道的相关信息,一共995条数据、28个属性。各个属性名称及介绍如下:

rank:基于订阅者数量的YouTube频道排名

Youtuber:YouTube频道的名称

subscribers:频道订阅者数量

video views:频道上所有视频的总观看次数

category:频道的类别

Title:YouTube频道的标题

uploads:频道上上传的视频总数

Country:YouTube频道的来源国家/地区

Abbreviation:国家缩写

channel_type:YouTube频道的类型(例如个人频道、品牌频道)

video_views_rank:基于总视频观看量的频道排名

country_rank:根据频道所在国家/地区的订阅者数量的频道排名

channel_type_rank:基于渠道类型(个人或品牌)对频道进行排名

video_views_for_the_last_30_days:过去 30 天的总视频播放量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值