线性代数(魏福义)——第一章:向量与线性空间

1.1向量及其线性运算

坐标系中可使用向量处理几何与运动学的问题,一般使用到二维或者三维有序数组,如(x,y)、(x,y,z),这样的数组称作向量,实际问题会用到更多维的向量。

1.1.1向量

以有序数组表示向量。n个数排成的有序数组就是n维向量。

α=(a1,a2,a3...,an)称为行向量;将其转置如下图形式即为列向量;转置后二者是不同的向量

T为转置符号

ai就是向量α第i个分量,分量的个数叫做向量的维数

向量组:维数相同的一些向量构成的集合,称为向量组

向量的基本概念:

1.1.2 向量的线性运算

与(x,y)和(x,y,z)向量的线性运算类似,n维向量也有线性运算(加法、减法、数乘)的运算:

由此衍生的运算定律比较简单,略去。

所有n维向量构成的集合记为R^n,也称n维向量空间(一个空间里都是n维向量,且这些向量进行线性运算的结果仍在此空间中,则称此空间为n维向量空间)

1.2 向量的内积

R^3(3维向量空间)中有:

1.2.1 向量的内积

类似于R^3中向量的内积,R^n中内积公式如图:

由内积公式得到的性质:

1.2.2 向量的模

长度为1则为单位向量

性质:

1.2.3 向量的距离

1.2.4 向量的夹角

θ∈[0,Π]

1.3 向量的线性关系

1.3.1 线性组合与线性表出

设α₁,α₂,…,αₑ(e≥1)是域P上线性空间V中的有限个向量。若V中向量α可以表示为:α=k₁α₁+k₂α₂+…+kₑαₑ(kₑ∈P,e=1,2,…,s);则称α是向量组α₁,α₂,…,αₑ的一个线性组合,亦称α可由向量组α₁,α₂,…,αₑ线性表示线性表出

例如:在三维线性空间P3中,向量α=(a₁,a₂,a₃)可由向量组α₁=(1,0,0),α₂=(0,1,0),α₁=(0,0,1)线性表出α=a₁α₁+a₂α₂+a₃α₃。

判断一个向量是否可用由一个向量组线性表出:

例:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值