1.1向量及其线性运算
坐标系中可使用向量处理几何与运动学的问题,一般使用到二维或者三维有序数组,如(x,y)、(x,y,z),这样的数组称作向量,实际问题会用到更多维的向量。
1.1.1向量
以有序数组表示向量。n个数排成的有序数组就是n维向量。
α=(a1,a2,a3...,an)称为行向量;将其转置如下图形式即为列向量;转置后二者是不同的向量

T为转置符号
ai就是向量α第i个分量,分量的个数叫做向量的维数
向量组:维数相同的一些向量构成的集合,称为向量组
向量的基本概念:

1.1.2 向量的线性运算
与(x,y)和(x,y,z)向量的线性运算类似,n维向量也有线性运算(加法、减法、数乘)的运算:

由此衍生的运算定律比较简单,略去。
所有n维向量构成的集合记为R^n,也称n维向量空间(一个空间里都是n维向量,且这些向量进行线性运算的结果仍在此空间中,则称此空间为n维向量空间)
1.2 向量的内积
R^3(3维向量空间)中有:

1.2.1 向量的内积
类似于R^3中向量的内积,R^n中内积公式如图:

由内积公式得到的性质:

1.2.2 向量的模

长度为1则为单位向量
性质:

1.2.3 向量的距离

1.2.4 向量的夹角

θ∈[0,Π]
1.3 向量的线性关系
1.3.1 线性组合与线性表出
设α₁,α₂,…,αₑ(e≥1)是域P上线性空间V中的有限个向量。若V中向量α可以表示为:α=k₁α₁+k₂α₂+…+kₑαₑ(kₑ∈P,e=1,2,…,s);则称α是向量组α₁,α₂,…,αₑ的一个线性组合,亦称α可由向量组α₁,α₂,…,αₑ线性表示或线性表出。
例如:在三维线性空间P3中,向量α=(a₁,a₂,a₃)可由向量组α₁=(1,0,0),α₂=(0,1,0),α₁=(0,0,1)线性表出α=a₁α₁+a₂α₂+a₃α₃。
判断一个向量是否可用由一个向量组线性表出:
例: