最短路算法总结

总体概要-最短路
图源ACWING

单源最短路

所有边权都是正数

朴素Dijkstra算法

题目

图源ACWING

解题思路

朴素的Dijkstra算法适用于点少边多的稠密图
具体思路如下图:
原链接https://www.acwing.com/solution/content/38318/
作者:Hasity
链接:https://www.acwing.com/solution/content/38318/
来源:AcWing

代码实现
#include<iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 510, M = 100010;

int h[N], e[M], ne[M], w[M], idx;//邻接表存储图/链式前向星,w为边的权重
int state[N];//state 记录是否找到了源点到该节点的最短距离
int dist[N];//dist 数组保存源点到其余各个节点的距离
int n, m;//图的节点个数和边数

void add(int a, int b, int c)//插入边
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

void Dijkstra()
{
    memset(dist, 0x3f, sizeof(dist));//dist 数组的各个元素为无穷大
    dist[1] = 0;//源点到源点的距离为置为 0
    for (int i = 0; i < n; i ++)
    {
        int t = -1;
        for (int j = 1; j <= n; j ++)//遍历 dist 数组,找到没有确定最短路径的节点中距离源点最近的点t
        {
            if (!state[j] && (t == -1 || dist[j] < dist[t]))
                t = j;
        }

        state[t] = 1;//state[i] 置为 1。

        for (int j = h[t]; j != -1; j = ne[j])//遍历 t 所有可以到达的节点 i
        {
            int i = e[j];
            dist[i] = min(dist[i], dist[t] + w[j]);//更新 dist[j]
        }


    }
}

int main()
{
    memset(h, -1, sizeof(h));//邻接表初始化

    cin >> n >> m;
    while (m -- )//读入 m 条边
    {
        int a, b, w;
        cin >> a >> b >> w;
        add(a, b, w);
    }

    Dijkstra();
    if (dist[n] != 0x3f3f3f3f)//如果dist[n]被更新了,则存在路径
        cout << dist[n];
    else
        cout << "-1";
}

堆优化的Dijkstra算法

题目

图源ACWING

解题思路

堆优化的Dijkstra算法适用于点多边少的稀疏图
具体思路如下:
在这里插入图片描述
作者:Hasity
链接:https://www.acwing.com/solution/content/38318/
来源:AcWing

代码实现
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>

using namespace std;

const int N = 1.5e5 + 10;

int h[N], ne[N], e[N], w[N], idx;//邻接表储存,w为边的权重
int statue[N], dis[N];
int n, m;

typedef pair<int, int> PII;
priority_queue<PII, vector<PII>, greater<PII>> heap;//默认是一个最大堆,但可以通过传递第三个模板参数 greater<PII> 来将其改为最小堆
//默认按pair 的第一个元素(即节点的最短距离)来比较元素,并且总是优先处理距离最小的节点。这意味着堆顶的元素将是当前已知最短距离最小的节点。
void add(int a, int b, int c)
{
    e[idx] = b;
    w[idx] = c;
    ne[idx] = h[a];
    h[a] = idx ++ ;
}

void Dijkstra()
{
    memset(dis, 0x3f, sizeof dis);
    dis[1] = 0;
    heap.push({0, 1});
    
    while(heap.size())
    {
        auto t = heap.top();
        heap.pop();
        int num = t.second;
        
        if(statue[num])
        {
            continue;
        }
        
        statue[num] = true;
        
        for(int i = h[num];i != -1;i = ne[i])
        {
            int j = e[i];
            dis[j] = min(dis[j], dis[num] + w[i]);
            heap.push({dis[j], j});
        }
    }
    
    if(dis[n] != 0x3f3f3f3f)
    {
        cout << dis[n];
    }
    else
    {
        cout << -1;
    }
}

int main()
{
    memset(h, -1, sizeof h);
    
    cin >> n >> m;
    
    int a, b, c;
    
    while(m -- )
    {
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }
    
    Dijkstra();
    
    return 0;
}

存在负权边

Bellman_Ford算法

题目

图源ACWING

解题思路

Bellman_Ford 算法思路

  1. for n次 (for循环几次就代表走了几次)
  2. 备份dis数组到back
  3. for 所有边 a,b,w (遍历所有边)
  4. dist[b] = min(dist[b],back[a] + w)

注意:back[] 数组是上一次迭代后 dist[] 数组的备份,由于是每个点同时向外出发,因此需要对 dist[] 数组进行备份,若不进行备份会因此发生串联效应,影响到下一个点

代码实现

为什么要备份dis到back:
在这里插入图片描述
** 为什么是if(dis[n] > 0x3f3f3f3f / 2) **
在这里插入图片描述
图源https://www.acwing.com/solution/content/14088/

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

const int N = 510, M = 1e4 + 10;

struct Edge{
    int a;
    int b;
    int w;
}e[M];//储存图,代表a指向b的边,权重为w

int dis[N], back[N];//dis为点到原点的距离,back为dis备份
int n, k, m;

void bellman_ford()
{
    memset(dis, 0x3f, sizeof dis);
    dis[1] = 0;
    
    for(int i = 0;i < k;i ++ )//循环k次代表走了k次,符合题目最多走k次的要求
    {
        memcpy(back, dis, sizeof dis);//备份dis数组,详见上方解释
        for(int j = 0;j < m;j ++ )//遍历所有的边
        {
            int a = e[j].a;
            int b = e[j].b;
            int w = e[j].w;
            
            dis[b] = min(dis[b], back[a] + w);//更新距离
        }
    }
    
    if(dis[n] > 0x3f3f3f3f / 2)//详见上方代码解释
    {
        cout << "impossible";
    }
    else
    {
        cout << dis[n];
    }
}

int main()
{
    cin >> n >> m >> k;
    
    int a, b, c;
    
    for(int i = 0;i < m;i ++ )
    {
        scanf("%d%d%d", &a, &b, &c);
        e[i] = {a, b, c};
    }
    
    bellman_ford();
    
    return 0;
}

SPFA算法

题目

图源ACWING

SPFA基本思路
  1. 建立一个队列,初始时队列里只有起始点。
  2. 再建立一个数组记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为0)。
  3. 再建立一个数组,标记点是否在队列中。队头不断出队,计算始点起点经过队头到其他点的距离是否变短,如果变短且被点不在队列中,则把该点加入到队尾。
  4. 重复执行直到队列为空。在保存最短路径的数组中,就得到了最短路径。
代码实现
#include<iostream>
#include<cstring>
#include<queue>

using namespace std;

const int N = 1e5 + 10;

int h[N], e[N], w[N], ne[N], idx;//邻接表储存点
int dis[N];
queue<int> q;
int n, m;
bool state[N];//state用来标记该点是否在队列q中

void add(int a, int b, int c)
{
    e[idx] = b;
    w[idx] = c;
    ne[idx] = h[a];
    h[a] = idx ++ ;
}

void spfa()
{
    memset(dis, 0x3f, sizeof dis);
    dis[1] = 0;
    q.push(1);
    state[1] = true;
    
    while(q.size())
    {
        int t = q.front();
        q.pop();
        
        state[t] = false;
        
        for(int i = h[t];i != -1;i = ne[i])//遍历与其相连的所有点的距离
        {
            int j = e[i];
            if(dis[j] > dis[t] + w[i])//被更新的点才放入队列中
            {
                dis[j] = dis[t] + w[i];
                if(!state[j])
                {
                    q.push(j);
                    state[j] = true;
                }
            }
        }
    }
    
    if(dis[n] != 0x3f3f3f3f)
    {
        cout << dis[n];
    }
    else
    {
        cout << "impossible";
    }
}

int main()
{
    memset(h, -1, sizeof h);
    
    cin >> n >> m;
    
    int a, b, c;
    
    while(m -- )
    {
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }
    
    spfa();
    
    return 0;
}

为什么bellman-ford算法写成 if(dist[n] > 0x3f3f3f/2) return -1; ,spfa确是 == 。难道不应该都是 if(dist[n] > 0x3f3f3f/2) return -1; 吗?
:因为队列里都是由起点更新到的点,不存在bellman-ford算法中未更新的点同样被边更新的情况。(bellman_ford是全部点都在试图更新距离,而SPFA是只由被更新的点来更新其他点的距离)

为什么要用state来标记某个点是否在队列中
:多个相同的点在队列中等待没有意义,距离都会被更新,属于一种优化方式;同时在取出该点的时候将其标记为false,也是因为该点的距离可能被多次更新(存在负权边)

阶段总结

  • Dijkstra算法是用当前距离最短的点去更新与其相连的点的距离
  • SPFA是用上次更新的点去更新与其相连的点的距离
  • Bellman_Ford算法则是非常暴力的每次更新所有点的距离
  • 在有负权边的情况下,SPFA的时间复杂度比Bellman_Ford算法的时间复杂度小,优先选用SPFA
  • Bellman_Ford算法适用于有限制步数的条件的题目,SPFA无法做到

多源汇最短路

Floyd算法

题目

图源ACWING

基本思路

解题思路,动态规划的思想
假设节点序号是从1到n。
假设f[0][i][j]是一个n*n的矩阵,第i行第j列代表从i到j的权值,如果i到j有边,那么其值就为ci,j(边ij的权值)。
如果没有边,那么其值就为无穷大。

f[k][i][j]代表(k的取值范围是从1到n),在考虑了从1到k的节点作为中间经过的节点时,从i到j的最短路径的长度。

比如,f[1][i][j]就代表了,在考虑了1节点作为中间经过的节点时,从i到j的最短路径的长度。
分析可知,f[1][i][j]的值无非就是两种情况,而现在需要分析的路径也无非两种情况,i=>j,i=>1=>j:
【1】f[0][i][j]:i=>j这种路径的长度,小于,i=>1=>j这种路径的长度
【2】f[0][i][1]+f[0][1][j]:i=>1=>j这种路径的长度,小于,i=>j这种路径的长度
形式化说明如下:
f[k][i][j]可以从两种情况转移而来:
【1】从f[k−1][i][j]转移而来,表示i到j的最短路径不经过k这个节点
【2】从f[k−1][i][k]+f[k−1][k][j]转移而来,表示i到j的最短路径经过k这个节点

总结就是:f[k][i][j]=min(f[k−1][i][j],f[k−1][i][k]+f[k−1][k][j])
从总结上来看,发现f[k]只可能与f[k−1]有关。

作者:lkm
链接:https://www.acwing.com/solution/content/20441/
来源:AcWing

代码实现

#include<iostream>
#include<algorithm>

using namespace std;

const int N = 210;
int dis[N][N];//dis[i][j]代表从i到j的最短距离
int n, m, k;

void Floyd()
{
    for(int q = 1;q <= n;q ++ )//i与j可以互换顺序但最外层q不能动
    {
        for(int i = 1;i <= n;i ++ )
        {
            for(int j = 1;j <= n;j ++ )
            {
                dis[i][j] = min(dis[i][j], dis[i][q] + dis[q][j]);
            }
        }
    }
}

int main()
{
    cin >> n >> m >> k;
    
    for(int i = 1;i <= n;i ++ )
    {
        for(int j = 1;j <= n;j ++ )
        {
            if(i == j)//一个点到他本身的最短距离就是0
            {
                dis[i][j] = 0;
            }
            else
            {
                dis[i][j] = 0x3f3f3f3f;
            }
        }
    }
    
    
    int x, y, z;
    
    while(m -- )
    {
        scanf("%d%d%d", &x, &y, &z);
        dis[x][y] = min(dis[x][y], z);//由于存在重边,取多个边中最短的一个即可
    }
    
    Floyd();
    
    while(k -- )
    {
        scanf("%d%d", &x, &y);
        if(dis[x][y] > 0x3f3f3f3f / 2)
        {
            cout << "impossible" << endl;
        }
        else
        {
            cout << dis[x][y] << endl;
        }
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值