一、电路逻辑门图形符号汇总
二、逻辑门
1、与门
2、或门
3、非门
4、与非门
5、或非门
6、异或门
7、同或门
8、与或非门
一、电路逻辑门图形符号汇总
表 C1 列出了基本逻辑门电路的国际图形符号和限定符号(GB/T 4728.12-1996)、国外流行图形符号和曾用图形符号。
注:在表的第三列列出了限定符号,限定符号有总限定符号、输入/输出限定符号、内部连接符号、方框内符号、非逻辑连接和信息流指示符号等。
总限定符号用于表征逻辑单元的总逻辑功能,输入/输出限定符号标注在方框内输入端或输出端,用于说明输入或输出的功能消息等等。
二、逻辑门
这是典型的逻辑门类型列表,每个门都有其特定的逻辑功能。以下是每个门的简要描述:
-
与门 (AND gate):
- 输出为高电平(1),当所有输入都为高电平时,输出为高电平。
- 输出为高电平(1),当所有输入都为高电平时,输出为高电平。
-
或门 (OR gate):
- 输出为高电平(1),当至少一个输入为高电平时,输出为高电平。
- 输出为高电平(1),当至少一个输入为高电平时,输出为高电平。
-
非门 (NOT gate):
- 输出是输入的反相,即高电平输入得到低电平输出,低电平输入得到高电平输出。
- 输出是输入的反相,即高电平输入得到低电平输出,低电平输入得到高电平输出。
4. 与非门 (NAND gate):
- 输出为高电平(1),当所有输入都为高电平时,输出为低电平。
-
或非门 (NOR gate):
- 输出为高电平(1),当所有输入都为低电平时,输出为低电平。
- 输出为高电平(1),当所有输入都为低电平时,输出为低电平。
-
异或门 (XOR gate):
- 输出为高电平(1),当输入中恰好有一个为高电平时,输出为高电平。
- 输出为高电平(1),当输入中恰好有一个为高电平时,输出为高电平。
-
同或门 (XNOR gate):
- 输出为高电平(1),当输入中恰好有偶数个高电平时,输出为高电平。同异或门相反。
- 输出为高电平(1),当输入中恰好有偶数个高电平时,输出为高电平。同异或门相反。
这些逻辑门是数字电子电路中基本的构建模块,通过它们的组合可以实现各种逻辑功能,从而构建数字系统。逻辑门的组合和连接方式形成了数字电路,用于处理和操作二进制数据。
1、与门
与门 (AND gate):
与门是最简单的逻辑门之一,其逻辑功能为“与”,表示只有当所有输入都是高电平(1)时,输出才为高电平(1)。 AND门通常用一个符号表示,该符号由一个圆圈和两个输入线组成,如下所示:
AND门的真值表:
输入 A | 输入 B | 输出 (A AND B) |
---|---|---|
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
AND门的操作:
-
输入:AND门有两个输入,通常表示为 A 和 B。
-
输出:AND门有一个输出,通常表示为 Y 或 F(函数)。
AND门的应用:
-
逻辑运算: AND门可用于逻辑运算,例如,检查多个条件是否同时满足。
-
存储器和寄存器: 在数字系统中,AND门被用于构建存储器和寄存器的写入控制电路。
-
算术逻辑单元(ALU): 在中央处理器(CPU)的算术逻辑单元中,AND门用于执行二进制运算,如位与操作。
-
编码器: 在数字系统中,AND门可用于构建编码器电路,将多个输入转换为较少数量的输出。
-
信号处理: 在电子通信和信号处理中,AND门用于逻辑信号的处理和过滤。
AND门是数字逻辑电路中最基本和常见的逻辑门之一,它在数字系统的设计和实现中发挥着重要的作用。
2、或门
或门 (OR gate):
或门是另一种基本的逻辑门,其逻辑功能为“或”,表示只要有一个或多个输入为高电平(1),输出就为高电平(1)。 或门通常用一个符号表示,该符号由一个加号和两个输入线组成,如下所示:
OR门的真值表:
输入 A | 输入 B | 输出 (A OR B) |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
OR门的操作:
-
输入:OR门有两个输入,通常表示为 A 和 B。
-
输出:OR门有一个输出,通常表示为 Y 或 F(函数)。
OR门的应用:
-
逻辑运算: OR门可用于逻辑运算,例如,检查多个条件中至少一个是否满足。
-
存储器和寄存器: 在数字系统中,OR门被用于构建存储器和寄存器的写入控制电路。
-
算术逻辑单元(ALU): 在中央处理器(CPU)的算术逻辑单元中,OR门用于执行二进制运算,如位或操作。
-
编码器: 在数字系统中,OR门可用于构建编码器电路,将多个输入转换为较少数量的输出。
-
信号处理: 在电子通信和信号处理中,OR门用于逻辑信号的处理和合并。
OR门是数字逻辑电路中最基本和常见的逻辑门之一,它在数字系统的设计和实现中发挥着重要的作用。
3、非门
非门 (NOT gate):
非门是最简单的逻辑门之一,也被称为反相器。其逻辑功能为“非”,表示输出是输入的反相。非门通常用一个符号表示,该符号为一个小圆圈,放在输入线上,如下所示:
NOT门的真值表:
输入 A | 输出 (NOT A) |
---|---|
0 | 1 |
1 | 0 |
NOT门的操作:
-
输入:NOT门有一个输入,通常表示为 A。
-
输出:NOT门有一个输出,通常表示为 Y 或 F(函数)。
NOT门的应用:
-
逻辑反转: NOT门用于反转逻辑信号,将高电平变为低电平,低电平变为高电平。
-
存储器和寄存器: 在数字系统中,NOT门被用于构建存储器和寄存器的写入控制电路。
-
时序电路: 在时序电路中,NOT门用于生成时钟信号的反相版本。
-
数字信号处理: 在数字信号处理中,NOT门用于逻辑信号的处理和反转。
-
控制电路: 在控制电路中,NOT门用于生成反相的控制信号。
NOT门是数字逻辑电路中最基本和常见的逻辑门之一,虽然它只有一个输入,但在数字系统的设计和实现中发挥着重要的作用。
4、与非门
与非门 (NAND gate):
与非门是一种组合了与门和非门的逻辑门,其逻辑功能为“与非”。与非门的输出是与门输出的反相。与非门通常用一个符号表示,该符号由一个与门符号和一个小圆圈组成,如下所示:
NAND门的真值表:
输入 A | 输入 B | 输出 (A NAND B) |
---|---|---|
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
NAND门的操作:
-
输入:NAND门有两个输入,通常表示为 A 和 B。
-
输出:NAND门有一个输出,通常表示为 Y 或 F(函数)。
NAND门的特性:
-
与非关系: 输出是与门输出的反相,即当所有输入都为高电平时,输出为低电平;否则输出为高电平。
-
通用性: NAND门被认为是一种“通用门”,因为其他所有基本逻辑门都可以由多个 NAND门组合而成。
NAND门的应用:
-
逻辑运算: NAND门可用于构建所有其他基本逻辑运算,包括与门、或门、非门等。
-
存储器和寄存器: 在数字系统中,NAND门被用于构建存储器和寄存器的写入控制电路。
-
算术逻辑单元(ALU): 在中央处理器(CPU)的算术逻辑单元中,NAND门用于执行二进制运算,如位与非操作。
-
编码器和解码器: NAND门用于构建编码器和解码器电路,实现数据编码和解码。
-
时序电路: NAND门被用于生成时序电路的反相控制信号。
NAND门是数字逻辑电路中非常重要且常用的逻辑门之一,其通用性和灵活性使其在数字系统设计中得到广泛应用。
5、或非门
或非门 (NOR gate):
或非门是一种组合了或门和非门的逻辑门,其逻辑功能为“或非”。或非门的输出是或门输出的反相。或非门通常用一个符号表示,该符号由一个或门符号和一个小圆圈组成,如下所示:
NOR门的真值表:
输入 A | 输入 B | 输出 (A NOR B) |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 0 |
NOR门的操作:
-
输入:NOR门有两个输入,通常表示为 A 和 B。
-
输出:NOR门有一个输出,通常表示为 Y 或 F(函数)。
NOR门的特性:
-
或非关系: 输出是或门输出的反相,即当至少一个输入为高电平时,输出为低电平;否则输出为高电平。
-
通用性: NOR门也被认为是一种“通用门”,因为其他所有基本逻辑门都可以由多个 NOR门组合而成。
NOR门的应用:
-
逻辑运算: NOR门可用于构建所有其他基本逻辑运算,包括与门、或门、非门等。
-
存储器和寄存器: 在数字系统中,NOR门被用于构建存储器和寄存器的写入控制电路。
-
算术逻辑单元(ALU): 在中央处理器(CPU)的算术逻辑单元中,NOR门用于执行二进制运算,如位或非操作。
-
编码器和解码器: NOR门用于构建编码器和解码器电路,实现数据编码和解码。
-
时序电路: NOR门被用于生成时序电路的反相控制信号。
NOR门在数字逻辑电路中是一种非常重要且常用的逻辑门,其通用性和灵活性使其在数字系统设计中得到广泛应用。
6、异或门
异或门 (XOR gate):
异或门是一种逻辑门,其逻辑功能为“异或”,表示只有在输入的位不相同时,输出才为高电平。异或门通常用一个符号表示,该符号由一个加号和一个小圆圈组成,如下所示:
XOR门的真值表:
输入 A | 输入 B | 输出 (A XOR B) |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
XOR门的操作:
-
输入:XOR门有两个输入,通常表示为 A 和 B。
-
输出:XOR门有一个输出,通常表示为 Y 或 F(函数)。
XOR门的特性:
- 异或关系: 输出是当输入的位不相同时,为高电平;当输入的位相同时,为低电平。
XOR门的应用:
-
数字运算: XOR门用于执行二进制的异或运算,也称为模2加法。
-
校验和和差错检测: XOR门在计算机网络和通信领域中用于生成校验和和进行差错检测。
-
加法器: XOR门用于构建半加法器和全加法器,用于执行二进制加法。
-
编码和解码: XOR门用于编码和解码数字数据,尤其在密码学中的应用。
-
开关和电路设计: XOR门用于开关电路和数字电路设计,实现特定的逻辑功能。
-
电子计算机: 在计算机中,XOR门被用于构建算术逻辑单元(ALU)和其他数字电路。
异或门是数字逻辑电路中常用的逻辑门之一,其在数字系统设计和实现中具有重要的作用。
7、同或门
同或门 (XNOR gate):
同或门是一种逻辑门,其逻辑功能为“同或”,表示只有在输入的位相同时,输出才为高电平。同或门的输出是异或门输出的反相。同或门通常用一个符号表示,该符号由一个加号和一个圆圈组成,如下所示:
XNOR门的真值表:
输入 A | 输入 B | 输出 (A XNOR B) |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
XNOR门的操作:
-
输入:XNOR门有两个输入,通常表示为 A 和 B。
-
输出:XNOR门有一个输出,通常表示为 Y 或 F(函数)。
XNOR门的特性:
- 同或关系: 输出是当输入的位相同时,为高电平;当输入的位不相同时,为低电平。
XNOR门的应用:
-
数字运算: XNOR门用于执行二进制的同或运算,也称为模2加法的补操作。
-
校验和和差错检测: XNOR门在计算机网络和通信领域中用于生成校验和和进行差错检测。
-
比较器: XNOR门可用于构建比较器电路,用于比较两个二进制数是否相等。
-
编码和解码: XNOR门用于编码和解码数字数据,尤其在密码学中的应用。
-
电子计算机: 在计算机中,XNOR门被用于构建算术逻辑单元(ALU)和其他数字电路。
同或门是数字逻辑电路中常用的逻辑门之一,其在数字系统设计和实现中具有重要的作用。
8、与或非门
与或非门 (AND-OR-INVERT gate):
与或非门是一种复合逻辑门,也称为复合与门。它是由两个与门、一个或门和一个非门组成的电路。与或非门的逻辑功能可以表示为“(A AND B) OR (C AND D) NOR (E)”。该门的符号通常由两个与门符号、一个或门符号和一个小圆圈组成,如下所示:
与或非门的操作:
-
输入:与或非门有五个输入,通常表示为 A、B、C、D 和 E。
-
输出:与或非门有一个输出,通常表示为 Y 或 F(函数)。
与或非门的真值表:
输入 A | 输入 B | 输入 C | 输入 D | 输入 E | 输出 (A AND B) OR (C AND D) NOR (E) |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 0 | 1 |
1 | 0 | 1 | 1 | 1 | 1 |
与或非门的特性:
- 逻辑功能: 与或非门执行两个与操作,然后对结果执行或操作,最后执行非操作。
与或非门的应用:
-
复杂逻辑: 与或非门用于实现复杂的逻辑功能,其中包含与、或和非操作的组合。
-
多输入逻辑: 与或非门可以处理多个输入,并根据逻辑运算输出相应的结果。
-
电子计算机: 在计算机中,与或非门用于构建复杂的逻辑单元和电路。
-
数字系统设计: 与或非门可用于数字系统中的逻辑电路设计,特别是在需要