2025故障诊断学习2

1、缩写词见缩写.docx文档,部分见下图

部分缩写词

2、读《非线性系统故障诊断的混合方法》——本书主要学习非线性动态系统的故障检测、隔离与辨识(FDII),集成的FDII方案,能够同时对一个非线性系统的组成部分的故障进行检测、隔离和严重性辨识 

第一章     

        “故障诊断系统”是一种能够检测被监测系统的故障存在性,并判断其位置和估计其严重程度的系统。换句话说,故障诊断系统能够执行三方面任务,即故障检测、故障隔离和故障辨识,它们的定义分别是:

(1)故障检测:作一个关于每个部件都正常还是有些部件出了问题的二次判断;

(2)故障隔离:判定故障位置,即辨识出哪个部件、传感器或者执行器出现了故障;

(3)故障辨识:估计故障的严重程度、类型或性质。

      残差信号的生成一般通过比较测量信号及其估计值而实现的,估计值根据被控系统的先验信息和知识获得。基于数学模型的残差生成方法目的:生成一组能够反映系统实际行为和由系统模型给出期望之前的残差。基于模型的生成残差方法:基于观测器的方法、奇偶空间方法、参数估计法等。

     本书提出方案的创新性之一:发展混合非线性FDII方案的两种实现方案,即串并混联和并联方案;应用到部分状态可测系统中,通过FTO(故障容错观测器)开发实现,FTO方法为卡尔曼滤波器结构式神经元状态估计器(NSE)。

第二章  故障检测与诊断

a、一般非线性动态系统的状态空间描述:

x_{k+1}=f\left ( x_{k},u_{k}\right )=\Gamma \left ( x_{k} \right )w_{k}

y_{k}=h \left ( x_{k} \right )+v_{k}

上述方程常用于非线性状态估计和滤波

若假设系统可观测和扰动噪声有界,yk等价于线性函数,即y_{k}=C x_{k} +v_{k}  (注:文献常见假设)

b、若对开环系统的零器件进行故障诊断,可将系统分为三个部分:传感器、执行器和系统动力学。

 P17-19 详细介绍了传感器故障和执行故障的数学模型及对系统影响的波形

c、解决故障检测和隔离的一般问题方法:基于硬件冗余和基于解析冗余的方法。基于硬件冗余备份主要器件,故障时,系统自动切换器件保证系统正常运行;基于解析冗余,通过解析方法生成的数学模型生成数学模型。基于解析冗余的诊断方法,可分为基于模型的方法和基于CI的方法。前者系统的数学模型作为被检测系统的先验知识源,后者利用系统的定量历史数据或者关于系统if-then规则形式的定性信息。

d、详细介绍了基于模型的故障诊断和基于智能计算的FDI方法。基于模型的故障诊断每个阶段都举例详细介绍,基于智能计算的FDI采用神经网络、模糊逻辑、遗传算法等方式。通过大量文献表明其过程,详细看书。

(1)基于模型的故障检测

故障检测是故障诊断的第一步,检测系统中故障的存在性。基于模型的故障检测是建立在残差生成的基础上的,这里的残差是一个表示实际的系统行为和系统的数学模型间不一致性的量。

残差生成最广泛的方法基于非线性观测器的,观测器时估计过程的状态及其输出的动态方程,现有的非线性观测器通常是在对系统结构、系统输入或系统的非线性程度进行特定假设下设计的。而奇偶空间方法生成残差,依赖于将所考虑系统的特定变量子集联系起来的解析冗余关系(ARR),可通过各种消元算法从模型方程中获得ARR。ARR分为依赖于已知的变量和依赖于故障器件(评估部分)。奇偶残差在线计算已知部分生成,残差值通过ARR的评估部分而解释。

(2)基于模型的故障隔离

对于故障检测,一个残差就可以,故障隔离需要残差序列,若哟个残差序列能分离所以的故障,就具有隔离故障的性能。

创建故障隔离的残差序列的方法:结构化残差序列和有向残差序列。

(3)基于模型的故障辨识

e、设计的FDII方案通过混合方式进行故障诊断,同时利用系统的先验数学模型信息和神经网络的非线性逼近的自适应能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值