叠放书籍问题

算法题目

在一个图书馆整理书籍的场景中,工作人员遇到了这样一个问题。每本书都有其特定的长和宽,用整数对 (l, w) 来表示,其中 l 代表长度,w 代表宽度。这里有一个规则,如果书 A 的长度和宽度都比书 B 的长度和宽度大,那么就可以把书 B 叠放在书 A 的上面。并且在叠放过程中,书籍不允许进行旋转操作。

现在给出一组不同规格书籍的长和宽信息,以数组 books 的形式呈现,数组中的每个元素代表一本书的长和宽,例如 [[20, 16], [15, 11], [10, 10], [9, 10]] ,这表示总共有 4 本书,第一本书长度为 20、宽度为 16,第二本书长度为 15、宽度为 11,依此类推,最后一本书长度为 9、宽度为 10。

你的任务是编写一个算法,计算出在这些书籍中,最多有多少个规格的书籍能按照规则叠放在一起。

输入描述:输入为一个二维数组 books ,数组中的每个元素是一个包含两个整数的列表,表示书籍的长和宽。
输出描述:输出一个整数,代表最多可以叠放在一起的规格书籍的数量。

示例一:
输入:

[[20, 16], [15, 11], [10, 10], [9, 10]]

输出:

3

解释:最多三个规格的书籍可以叠放在一起,从下到上依次是 [20, 16], [15, 11], [10, 10]

解题思路

为了解决这个问题,我们可以按照以下步骤进行:
首先,对所有书籍进行排序。排序的规则是按照书籍的长度从大到小排序,如果长度相同,则按照宽度从大到小排序。这样排序的目的是为了方便后续比较书籍之间的大小关系,从最大尺寸的书籍开始依次向下比较。
然后,初始化一个变量 count 为 1,因为至少有一本书可以作为起始的叠放书籍。同时,将排序后的第一本书作为前一本书 prev
接下来,遍历排序后的书籍数组(从第二本书开始)。对于每一本书,检查它的长度和宽度是否都小于前一本书的长度和宽度。如果满足这个条件,说明这本书可以叠放在前一本书的上面,此时将 count 的值加 1,并将当前书更新为前一本书 prev
最后,返回 count 的值,这个值就是最多可以叠放在一起的规格书籍的数量。

示例代码

def solve_method(books):
    # 按照长度从大到小、宽度从大到小排序
    books.sort(key=lambda x: (x[0], x[1]), reverse=True)

    # 可叠放的书的个数
    count = 1
    # 前一本书
    prev = books[0]
    for book in books[1:]:
        # 如果当前书的长度和宽度都小于前一本书,则个数加1
        if prev[0] > book[0] and prev[1] > book[1]:
            count += 1
            prev = book

    return count


if __name__ == '__main__':
    assert solve_method([[20, 16], [15, 11], [10, 10], [9, 10]]) == 3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

t0_54coder

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值