算法题目
在一个图书馆整理书籍的场景中,工作人员遇到了这样一个问题。每本书都有其特定的长和宽,用整数对 (l, w)
来表示,其中 l
代表长度,w
代表宽度。这里有一个规则,如果书 A
的长度和宽度都比书 B
的长度和宽度大,那么就可以把书 B
叠放在书 A
的上面。并且在叠放过程中,书籍不允许进行旋转操作。
现在给出一组不同规格书籍的长和宽信息,以数组 books
的形式呈现,数组中的每个元素代表一本书的长和宽,例如 [[20, 16], [15, 11], [10, 10], [9, 10]]
,这表示总共有 4 本书,第一本书长度为 20、宽度为 16,第二本书长度为 15、宽度为 11,依此类推,最后一本书长度为 9、宽度为 10。
你的任务是编写一个算法,计算出在这些书籍中,最多有多少个规格的书籍能按照规则叠放在一起。
输入描述:输入为一个二维数组 books
,数组中的每个元素是一个包含两个整数的列表,表示书籍的长和宽。
输出描述:输出一个整数,代表最多可以叠放在一起的规格书籍的数量。
示例一:
输入:
[[20, 16], [15, 11], [10, 10], [9, 10]]
输出:
3
解释:最多三个规格的书籍可以叠放在一起,从下到上依次是 [20, 16], [15, 11], [10, 10]
。
解题思路
为了解决这个问题,我们可以按照以下步骤进行:
首先,对所有书籍进行排序。排序的规则是按照书籍的长度从大到小排序,如果长度相同,则按照宽度从大到小排序。这样排序的目的是为了方便后续比较书籍之间的大小关系,从最大尺寸的书籍开始依次向下比较。
然后,初始化一个变量 count
为 1,因为至少有一本书可以作为起始的叠放书籍。同时,将排序后的第一本书作为前一本书 prev
。
接下来,遍历排序后的书籍数组(从第二本书开始)。对于每一本书,检查它的长度和宽度是否都小于前一本书的长度和宽度。如果满足这个条件,说明这本书可以叠放在前一本书的上面,此时将 count
的值加 1,并将当前书更新为前一本书 prev
。
最后,返回 count
的值,这个值就是最多可以叠放在一起的规格书籍的数量。
示例代码
def solve_method(books):
# 按照长度从大到小、宽度从大到小排序
books.sort(key=lambda x: (x[0], x[1]), reverse=True)
# 可叠放的书的个数
count = 1
# 前一本书
prev = books[0]
for book in books[1:]:
# 如果当前书的长度和宽度都小于前一本书,则个数加1
if prev[0] > book[0] and prev[1] > book[1]:
count += 1
prev = book
return count
if __name__ == '__main__':
assert solve_method([[20, 16], [15, 11], [10, 10], [9, 10]]) == 3