Airbnb数据分析:超级房东与价格关系探究

在使用Airbnb预订住宿时,你是否注意到有些房东被标记为“超级房东”?这不仅是一个荣誉称号,也可能影响房价。今天我们将探讨如何利用Python的Pandas库来分析Airbnb数据集中的一个有趣问题:寻找哪个社区中,超级房东与非超级房东的房价中位数差异最大。

数据集简介

我们使用的Airbnb数据集包含多个字段,其中我们关注的是:

  • neighbourhood_cleansed:社区名称
  • host_is_superhost:房东是否为超级房东('t’表示是,'f’表示否)
  • price:房价

问题描述

我们的目标是找出在所有社区中,超级房东和非超级房东的房价中位数差异最大的那个社区。

使用Pandas进行分析

首先,我们需要加载数据并进行必要的清理。假设我们已经加载了一个名为listings的DataFrame:

import pandas 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

t0_54coder

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值