算法题目
超级玛丽来到了新的一关,面前是一座长长的吊桥,吊桥尽头是下水管道。不过,吊桥上随机的木板存在缺失情况,一旦踩到缺失的木板,超级玛丽就会死亡。若死亡后还有剩余生命,他会在原地复活且不受木板缺失影响,但会消耗一次生命。要是跨过了管道,超级玛丽将跌入悬崖,导致通关失败。
超级玛丽从起点S
出发,他有三种移动方式:可以走到下一个木板(计1步),也可以跳着跨过一个木板(计2步)或两个木板(计3步),并且最终必须刚好走到终点E
。
现在给出超级玛丽当前的生命数M
,吊桥的长度N
,缺失的木板数K
,以及随机缺失的木板编号数组L
,需要你计算超级玛丽有多少种方法可以通过此关。
输入描述:
第一行输入M N K
,各参数含义如下:
M
:超级玛丽当前生命数,取值范围是1 <= M <= 5。N
:吊桥的长度,取值范围是1 <= N <= 32。