在过去的十年里,监督学习一直是大多数人工智能研究的重点。然而,多位业内专家认为,机器学习的未来可能在于无监督学习方法,它有望让机器达到人类级别的智能。
Yoshua Bengio指出,无监督主导的学习方法是最早让我们能够训练深度网络的方法。大约在2010 - 2011年,人们意识到不需要这些无监督学习技术,就可以直接训练非常深的监督模型。随后,计算机视觉、语音识别、机器翻译等工业应用迅速涌现。但他认为,这些对于实现人类级别的人工智能是不够的,因为人类并不需要那么多的监督来学习。
Samy Bengio则提到,学习方式不只是监督和无监督两种,中间还有多种类型,比如自监督学习和强化学习等。可以从已有的数据中以低成本获得监督信息,而连接所有这些学习方式的关键在于如何表示数据,所以表示学习正变得越来越核心。
Yann Lecun与Yoshua和Geoffrey Hinton去年共同获得了图灵奖,他看好自监督学习。目前深度学习的应用存在局限,因为需要大量的标注数据。只有在能够收集并正确标注数据的情况下,才具有经济可行性,而这样的应用相对较少。监督学习在对物体和图像进行分类、语言翻译(如果有大量平行文本)以及语音识别(如果收集了足够的数据)方面效果很好。但动物获取关于世界的知识的一些学习过程,机器还不具备。他认为自监督学习能让机器通过观察学习,不需要那么多标注样本,或许能通过