P6-P7 数据加载+Dataset类代码实战

P6-P7 数据加载+Dataset类代码实战

P6 数据加载

Dataset 和Dataloader区别
在这里插入图片描述

P7 Dataset类代码实战

写在前面:
a.安装opencv-python:
pip install opencv-python
import cv2

b.用pil或安装pillow (本篇用法)
from PIL import Image

MyData继承Dataset,需要定义三个函数
1、def init(self)
初始化,为这个函数用来设置在类中的全局变量
任务:获取路径、合并路径、地址列表化

class MyData(Dataset):  
    # 为后面的函数提供一些量
    def __init__(self, root_dir, label_dir):
        self.root_dir = root_dir  
        self.label_dir = label_dir
        # 获取地址
        self.path = os.path.join(self.root_dir, self.label_dir)
        # 地址列表化
        self.img_path = os.listdir(self.path)  # 获取地址后,将文件夹中所有数据以列表形式存入

self:相当于一个船,函数的变量相当于一个人,只有变量放船上才能给别的函数用

2、 def getitem(self, idx)
获取各个图
工作:访问init中的列表,把列表的名称逐一传递给一个变量,再次合并路径,并且把文件名连接在路径,从而获取行对路径。之后用PIL中的Image.open函数读取(加载)上述路径的文件,返回 图像img和标签 label

    # 获取各个图
    def __getitem__(self, idx):
        img_name = self.img_path[idx]
        # 获取相对路径
        img_item_path = os.path.join(self.root_dir, self.label_dir, img_name)
        img = Image.open(img_item_path)  # ps:操作图片前都需要打开open一下
        label = self.label_dir  # 图片上一级的目录
        return img, label  # 图的名称 和 图片标签(当前类中,标签为文件夹名称)

img:图的名称,由此可以使用 查看、print、size等功能
label:图片标签,当前类中,标签为文件夹名称(就这么定义的)

3、def len(self)
计算数据长度

    def __len__(self):
        return len(self.img_path)
root_dir = "hymenoptera_data/train"
ants_label_dir = "ants"
bees_label_dir = "bees"
# 创建实例
ants_dataset = MyData(root_dir, ants_label_dir)
bees_dataset = MyData(root_dir, bees_label_dir)

train_dataset = ants_dataset + bees_dataset

完整代码

from torch.utils.data import Dataset
import os
from PIL import Image

class MyData(Dataset):  # 继承Dataset
    # 为后面的函数提供一些量
    def __init__(self, root_dir, label_dir):
        self.root_dir = root_dir  
        # self:相当于一个船,函数的变量相当于一个人,只有变量放船上才能给别的函数用
        self.label_dir = label_dir
        # 获取地址
        self.path = os.path.join(self.root_dir, self.label_dir)
        # 地址列表化
        self.img_path = os.listdir(self.path)  # 获取地址后,将文件夹中所有数据以列表形式存入

    # 获取各个图
    def __getitem__(self, idx):
        img_name = self.img_path[idx]
        # 获取相对路径
        img_item_path = os.path.join(self.root_dir, self.label_dir, img_name)
        img = Image.open(img_item_path)  # ps:操作图片前都需要打开open一下
        label = self.label_dir  # 图片上一级的目录
        return img, label  # 图的名称 和 图片标签(当前类中,标签为文件夹名称)
        # 

    def __len__(self):
        return len(self.img_path)

root_dir = "hymenoptera_data/train"
ants_label_dir = "ants"
bees_label_dir = "bees"
# 创建实例
ants_dataset = MyData(root_dir, ants_label_dir)
bees_dataset = MyData(root_dir, bees_label_dir)

train_dataset = ants_dataset + bees_dataset

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值