算法设计与分析 头哥educoder ​最短路径

本文介绍了如何使用Dijkstra算法求解带权有向图的单源最短路径问题。给出输入格式和输出格式,并提供了一个具体实例进行解析,展示从源点到各个顶点的最短路径长度计算过程。
摘要由CSDN通过智能技术生成

 给定一个带权有向图G=(V,E),其中每条边的权是一个实数。另外,还给定V中的一个顶点,称为源。要计算从源到其他所有各顶点的最短路径长度。这里的长度就是指路上各边权之和。这个问题通常称为单源最短路径问题。利用Dijkstra算法计算图1中源点s到其他顶点的最短路径。

输入格式 第一行包含三个整数n,m,s分别表示点的个数、有向边的个数、出发点的编号。 接下来m行每行包含三个整数u,v,w 表示一条从u→v,长度为w的有向边。 输出格式 输出一行n个整数,第i个表示源点s到第i个点的最短路径,若不能达到则输出-9999.

输入样例 4 6 1 1 2 2 2 3 2 2 4 1 1 3 5 3 4 3 1 4 4

输出样例 0 2 4 3

#include <stdio.h>
#include <limits.h>
#include <malloc.h>
#include <stdbool.h>

// 点的定义
typedef struct Point {
    int dis;
    bool visit;
} Point;

int MIN(int dis, int i);

int start = 1;


// Dijkstra算法
void Dijkstra(int **g, int vexNum) {

    Point 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值