深度学习Week3-天气识别(Pytorch)

目录

一、 前期准备

1.1设置GPU和引入环境

1.2导入数据

 1.3划分数据集

 二、构建简单的CNN网络

三、 训练模型

1. 设置超参数

2. 编写训练函数

3. 编写测试函数

4. 正式训练

 四、 结果可视化

 五、测试

注:遇到的bug

六、总结


🍨 本文为[🔗365天深度学习训练营]中的学习记录博客
🍦 参考文章:[Pytorch实战 | 第P3周:彩色图片识别:天气识别]
🍖 原作者:[K同学啊|接辅导、项目定制]

难度:新手入门⭐
语言:Python3、Pytorch

🍺要求:

本地读取并加载数据。
测试集accuracy到达93%

🍻拔高:

测试集accuracy到达95%
调用模型识别一张本地图片

一、 前期准备

1.1设置GPU和引入环境

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os,PIL,pathlib

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print(device)

cuda

1.2导入数据

程序所在文件夹内新建data文件夹,里面放入四个天气的文件数据,最后输出验证一下

data_dir = './data/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames

['cloudy', 'rain', 'shine', 'sunrise']

进行图形变换,最后输出看一下

 torchvision.transforms函数主要是用于常见的一些图形变换,例如裁剪、旋转等;

这里用到torchvision.transforms.Compose()类,其主要作用是串联多个图片变换的操作。

有兴趣的同学可以参考这篇博客:torchvision.transforms.Compose()详解【Pytorch手册】

total_datadir = './data/'

train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
print(total_data)

Dataset ImageFolder
    Number of datapoints: 1125
    Root location: ./data/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )

 1.3划分数据集

设置一下训练集和测试级的大小,和其数据集划分

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print(train_dataset, test_dataset)
print(train_size, test_size)

<torch.utils.data.dataset.Subset object at 0x000001984C590460> <torch.utils.data.dataset.Subset object at 0x0000019854ED4790>
900 225

设置一下batch_size(想设大但gpu内存好像不够?改了还是那样,利用率低的惊人所以最后设128了以前都是32),用dataloader数据加载一下,记得都要打乱(shuffle=True),并且设num_work=0,即非多进程处理,(为0其实设不设都行我一开始设1但是给改一下default为0因为Linux线程和windows不一样但这个数据集小+我懒所以没改XD)并测试输出(经典操作步骤)

batch_size = 128

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=0)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=0)

# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

 二、构建简单的CNN网络

CNN网络一般由特征提取网络分类网络构成,特征提取网络用于提取图片的特征,后者将图片进行分类。

常用的:

torch.nn.Conv2d():nn.Conv2d为卷积层,用于提取图片的特征,传入参数为输入channel,输出channel,池化核大小

 torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

第一个参数(in_channels)是输入的channel数量
第二个参数(out_channels)是输出的channel数量
第三个参数(kernel_size)是卷积核大小
第四个参数(stride)是步长,默认为1
第五个参数(padding)是填充大小,默认为0

 torch.nn.Linear():nn.Linear为全连接层,对输入数据应用线性变换。参数(每个输入样本大小,每个输出样本大小)

torch.nn.MaxPool2d():nn.MaxPool2d为池化层,进行下采样,用更高层的抽象表示图像特征,传入参数为池化核大小

最后打印一下相关参数

import torch.nn.functional as F

class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
       
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24*50*50, len(classeNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      
        x = F.relu(self.bn2(self.conv2(x)))     
        x = self.pool(x)                        
        x = F.relu(self.bn4(self.conv4(x)))     
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool(x)                        
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn().to(device)
print(model)

Using cuda device
Network_bn(
  (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (fc1): Linear(in_features=60000, out_features=4, bias=True)
)

三、 训练模型

1. 设置超参数

也是在一二周用到的,一模一样

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2. 编写训练函数

常用的也还是这三个

1. optimizer.zero_grad()

梯度值grad属性清为0,即上一次梯度记录被清空。

2. loss.backward()

反向传播,会自动计算出对应的梯度,loss.backward()要写在optimizer.step()之前。

3. optimizer.step()

进行优化步骤,通过梯度下降来更新参数的值。写在loss.backward()之后。

训练函数代码很标准:代码部分和week1、2一样。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

3. 编写测试函数

训练函数和测试函数差别不大,但是由于不进行梯度下降对网络权重进行更新,所以不用优化器

(所以测试函数代码部分和week1、2一样)

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4. 正式训练

1. model.train()

启动Batch Normalization (BN)和 Dropout。保证前者能够用到每一批数据的均值和方差,对后者将随机取一部分网络连接来训练更新参数。

2. model.eval()

不启用 Batch Normalization 和 Dropout。保证前者能用到所有训练数据集和方差,所以训练过程中BN层的这两个值要保持不变。对后者也是用到所有网络连接,所以要放弃随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

代码又同week1、2:(epochs训练轮数适当增加提高准确率)

epochs     = 50
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

Epoch: 1, Train_acc:42.4%, Train_loss:1.196, Test_acc:50.7%,Test_loss:1.357
Epoch: 2, Train_acc:66.6%, Train_loss:0.925, Test_acc:60.4%,Test_loss:1.271
Epoch: 3, Train_acc:73.9%, Train_loss:0.777, Test_acc:70.7%,Test_loss:1.095
Epoch: 4, Train_acc:77.6%, Train_loss:0.815, Test_acc:68.9%,Test_loss:0.931
Epoch: 5, Train_acc:79.2%, Train_loss:0.698, Test_acc:75.6%,Test_loss:0.783
....一直到50
Done

五十轮后,测试准确率在90%左右 

 四、 结果可视化

像以前那样,把训练过程弄成统计图,上面参数一样的话代码同week1、2一样

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

 五、测试

调用本地图片测试 

local_test_image = PIL.Image.open ("./p2.png").convert('RGB')
local_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
])
local_test_data = local_transforms(local_test_image)

_,result=torch.max(model(local_test_data.to(device).unsqueeze(0)),1)
print(classeNames[result])

注:遇到的bug

提示应该是三通道(RGB),但是是四通道。添加一下(一通道是‘L’)上面代码已经改成RGB了

img = Image.open('test.png')
if img.mode != 'RGB':
    img = img.convert('RGB')

结果:

六、总结

这周不同于week1、2,不是用dataset下载数据集,而是用图片组成的训练集(和我其他博客弄opencv的训练类似),同时最后调用本地图片进行测试。week3比week1、2难一些,通过本篇学习加强了自己对于深度学习的理解。(我在尝试弄模型测试但失败了,成功了再分享)

  • 1
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
要配置deeplabv3-plus-pytorch的训练环境,您需要进行以下步骤: 1. 安装Python:确保已经安装了Python,并建议使用Python 3.6或更高版本。 2. 创建虚拟环境(可选):为了隔离不同项目的依赖,建议在项目中使用虚拟环境。您可以使用`venv`模块或第三方工具(如`conda`)创建和管理虚拟环境。 3. 安装PyTorch和TorchVision:PyTorch是进行深度学习的基础库,而TorchVision提供了处理图像数据集的工具。您可以使用以下命令安装PyTorch和TorchVision: ``` pip install torch torchvision ``` 如果您需要特定的PyTorch版本,可以在安装命令中指定版本号。 4. 克隆deeplabv3-plus-pytorch仓库:将deeplabv3-plus-pytorch的代码库克隆到本地: ``` git clone https://github.com/VainF/DeepLabV3Plus-Pytorch.git ``` 5. 安装依赖项:进入克隆的代码库目录,并使用以下命令安装所需的Python依赖项: ``` pip install -r requirements.txt ``` 6. 下载预训练模型权重(可选):如果您想从预训练模型开始训练,您可以下载已经预训练好的权重。可以在代码库的README文件中找到下载链接,并将权重文件保存到适当的位置。 7. 准备数据集:根据您的任务和数据集,将图像和标签数据组织到相应的文件夹中。确保数据集的文件路径与代码库中的配置文件相对应。 8. 开始训练:运行相应的训练脚本,例如`train.py`,并根据需要配置训练参数。您可以通过命令行参数或修改配置文件来设置训练参数。 以上是一个基本的环境配置过程,具体的步骤可能会因为您的特定环境和需求而有所不同。请参考deeplabv3-plus-pytorch代码库中的文档和说明,以获取更详细的配置指导。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牛大了2023

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值