深度学习Week6-运动鞋识别(Pytorch)

目录

一、前期准备

1.设置GPU

2.导入数据

二、构建简单的CNN网络

 三、 训练模型

1.设置超参数

2. 编写训练函数

3. 编写测试函数

4. 设置动态学习率

5.正式训练

 四、 结果可视化

 1. Loss与Accuracy图

2. 指定图片进行预测 

五、动态学习率

1. torch.optim.lr_scheduler.StepLR

2. lr_scheduler.LambdaLR

3. lr_scheduler.MultiStepLR

*六、拔高

1.模型训练-设置超参数-调整为Adam优化器

2.在1的基础上,模型训练-动态学习率调整

3.在1的基础上,模型训练-等间隔动态调整法


🍨 本文为[🔗365天深度学习训练营]中的学习记录博客
🍦 参考文章:[Pytorch实战 | 第P5周:运动鞋识别]
🍖 原作者:[K同学啊|接辅导、项目定制]

🍺要求:

  1. 了解如何设置动态学习率(重点)
  2. 调整代码使测试集accuracy到达84%。

🍻拔高(可选):

  1. 保存训练过程中的最佳模型权重
  2. 调整代码使测试集accuracy到达86%。
  • 语言环境:Python3.8
  • 编译器:Pycharm

一、前期准备

1.设置GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os, PIL, pathlib

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print(device)

输出:cuda

2.导入数据

数据集解压后,有test和train图片集,里面都分别是Adidas和Nike。

data_dir = './46-data/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
print(classeNames)

输出:['test', 'train']

图形变换,输出一下:用到torchvision.transforms.Compose()类,有兴趣的同学可以参考这篇博客:torchvision.transforms.Compose()详解【Pytorch手册】

train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

train_dataset = datasets.ImageFolder("./46-data/train/",transform=train_transforms)
test_dataset  = datasets.ImageFolder("./46-data/test/",transform=train_transforms)

print(train_dataset.class_to_idx)

{'adidas': 0, 'nike': 1}

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=0) //线程懒得调了...直接为0
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=0)

for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

二、构建简单的CNN网络

和week4卷积层池化层设置基本一样

import torch.nn.functional as F
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 12, kernel_size=5, padding=0),  #3,12为输入输出通道数量 12*220*220
            nn.BatchNorm2d(12),
            nn.ReLU())

        self.conv2 = nn.Sequential(
            nn.Conv2d(12, 12, kernel_size=5, padding=0),  # 12*216*216
            nn.BatchNorm2d(12),
            nn.ReLU())

        self.pool3 = nn.Sequential(
            nn.MaxPool2d(2))  # 12*108*108

        self.conv4 = nn.Sequential(
            nn.Conv2d(12, 24, kernel_size=5, padding=0),  # 24*104*104
            nn.BatchNorm2d(24),
            nn.ReLU())

        self.conv5 = nn.Sequential(
            nn.Conv2d(24, 24, kernel_size=5, padding=0),  # 24*100*100
            nn.BatchNorm2d(24),
            nn.ReLU())

        self.pool6 = nn.Sequential(
            nn.MaxPool2d(2))  # 24*50*50

        self.dropout = nn.Sequential(
            nn.Dropout(0.2))

        self.fc = nn.Sequential(
            nn.Linear(24 * 50 * 50, len(classeNames)))

    def forward(self, x):
        batch_size = x.size(0)
        x = self.conv1(x)  # 卷积-BN-激活
        x = self.conv2(x)  # 卷积-BN-激活
        x = self.pool3(x)  # 池化
        x = self.conv4(x)  # 卷积-BN-激活
        x = self.conv5(x)  # 卷积-BN-激活
        x = self.pool6(x)  # 池化
        x = self.dropout(x)
        x = x.view(batch_size, -1)  # flatten 变成全连接网络需要的输入 (batch, 24*50*50) ==> (batch, -1), -1 此处自动算出的是24*50*50
        x = self.fc(x)

        return x


device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Model().to(device)
print(model)

输出模型结构

 三、 训练模型

这里不同于前几周,采用动态学习率(还用SGD)

1.设置超参数

learn_rate = 1e-4 # 初始学习率
optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)
loss_fn = nn.CrossEntropyLoss() # 创建损失函数

2. 编写训练函数

同week4

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

3. 编写测试函数

训练函数和测试函数差别不大,但是由于不进行梯度下降对网络权重进行更新,所以不用优化器

(所以测试函数代码部分和week1-4一样)

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)  # 批次数目
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss

4. 设置动态学习率

def adjust_learning_rate(optimizer, epoch, start_lr):
    # 每2轮epoch衰减到原来的 0.92
    lr = start_lr * (0.92 ** (epoch // 2))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

也可以调用官方的动态学习率的接口(效果和上面一样,调用时使用

 # 调用官方动态学习率接口时使用
lambda1 = lambda epoch: (0.92 ** (epoch // 2)
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

5.正式训练

总体同前几周,就是循环开头部分因为自定义了学习率,要实时更新学习率

epochs     = 40

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    # 更新学习率(使用自定义学习率时使用)
    adjust_learning_rate(optimizer, epoch, learn_rate)
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    # scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
print('Done')

也可以加上保存模型的代码

# 模型保存
PATH = './model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))

风扇呼呼转,准确率78%不到,顺便保持了下模型

 

 四、 结果可视化

 1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

2. 指定图片进行预测 

因为上面已经保存模型了,这里调用即可

⭐torch.squeeze()详解 :对数据的维度进行压缩,去掉维数为1的的维度

torch.squeeze(input, dim=None, *, out=None)

⭐torch.unsqueeze():对数据维度进行扩充。给指定位置加上维数为一的维度

torch.unsqueeze(input, dim)

week4中有对这两种函数的详解+例子,这里不再赘述

from PIL import Image

classes = list(train_dataset.class_to_idx)
def predict_one_image(image_path, model, transform, classes):
    test_img = Image.open(image_path).convert('RGB')
    #plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)  # (0表示,在第一个位置增加维度)

    model.eval()
    output = model(img)

    _, pred = torch.max(output, 1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
    # 预测训练集中的某张照片


predict_one_image(image_path='./46-data/test/adidas/9.jpg',
                  model=model,
                  transform=train_transforms,
                  classes=classes)

 

五、动态学习率

1. torch.optim.lr_scheduler.StepLR

等间隔动态调整方法,每经过step_size个epoch,做一次学习率decay,以gamma值为缩小倍数。

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)
  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • step_size(int):是学习率衰减的周期,每经过每个epoch,做一次学习率decay
  • gamma(float):学习率衰减的乘法因子。Default:0.1

用法示例:

optimizer = torch.optim.SGD(net.parameters(), lr=0.001 )
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)

2. lr_scheduler.LambdaLR

根据自己定义的函数更新学习率。

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1, verbose=False)
  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • lr_lambda(function):更新学习率的函数

用法示例:

lambda1 = lambda epoch: (0.92 ** (epoch // 2) # 第二组参数的调整方法
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

3. lr_scheduler.MultiStepLR

在特定的 epoch 中调整学习率

torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1, verbose=False)
  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • milestones(list):是一个关于epoch数值的list,表示在达到哪个epoch范围内开始变化,必须是升序排列
  • gamma(float):学习率衰减的乘法因子。Default:0.1

用法示例:

optimizer = torch.optim.SGD(net.parameters(), lr=0.001 )
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, 
                                                 milestones=[2,6,15], #调整学习率的epoch数
                                                 gamma=0.1)

更多的官方动态学习率设置方式可参考:torch.optim — PyTorch 1.13 documentation

👉调用官方接口示例:

model = [Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, 0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9)

for epoch in range(20):
    for input, target in dataset:
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        optimizer.step()
    scheduler.step()

*六、拔高

我们的测试集准确率才78%不到,达不到我们的要求,所以要对模型进行修改

1.模型训练-设置超参数-调整为Adam优化器

根据week4的经验,Adam优化器可以实现学习率动态的变化。

optimizer  = torch.optim.Adam(model.parameters(), lr=learn_rate)

准确率提升明显,到达85%+ ,作业要求完成

2.在1的基础上,模型训练-动态学习率调整

原先是每2轮epoch学习率衰减到原先的92%,我们调整到98%

def adjust_learning_rate(optimizer, epoch, start_lr):
    # 每 2 个epoch衰减到原来的 0.98
    lr = start_lr * (0.98 ** (epoch // 2))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

但最终准确率反而下降到82%左右...这里把轮数由 每两轮 改为 每十轮 再试一次

def adjust_learning_rate(optimizer, epoch, start_lr):
    # 每 2 个epoch衰减到原来的 0.98
    lr = start_lr * (0.98 ** (epoch // 10))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

然后准确率84%左右....可能是我调的不太对,这里就先不用这个方法了

3.在1的基础上,模型训练-等间隔动态调整法

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)

但准确率为80%左右...剩下几种方法大家可以自行测试

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牛大了2023

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值