方格取数问题

更好的阅读体验 方格取数

题目:方格取数

设有 N×N 的方格图,我们在其中的某些方格中填入正整数,而其它的方格中则放入数字0。如下图所示:

某人从图中的左上角 A 出发,可以向下行走,也可以向右行走,直到到达右下角的 B 点。

在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。

此人从 A 点到 B 点共走了两次,试找出两条这样的路径,使得取得的数字和为最大。

输入格式

第一行为一个整数N,表示 N×N 的方格图。

接下来的每行有三个整数,第一个为行号数,第二个为列号数,第三个为在该行、该列上所放的数。

行和列编号从 11 开始。

一行“0 0 0”表示结束。

输出格式

输出一个整数,表示两条路径上取得的最大的和。

数据范围

N≤10

输入样例:
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
输出样例:
67
解题思路:

​ 从左上角走到右下角,于是想到DP中的数字三角形模型。关于数字三角形模型,可以去看这篇文章[线性DP](线性DP - 小樱桃 (oyto.github.io)/)。

​ 这题的不同点是,这里要取两次数,于是进行DP过程:

f[i1,j1,i2,j2]表示所有从(1,1),(1,1)分别走到(i1,j1),(i2,j2)路径的最大值。

如何处理“同一个格子不能被重复选择”?
    分析后发现,只有当i1 + j1 == i2 + j2时,两条路径的格子才可能重合,
    于是可以根据这条性质将思维优化成三维,

集合:f[k,i1,i2]表示所有从(1,1),(1,1)走到(i1,k-i1),(i2,k-i2)的路径的最大值
    k表示两条路线当前走到的格子的横纵坐标之和

属性:max

状态计算:
    以最后一步是从往下走还是往右走进行划分,因为有两次走法,所以被分成了四种情况
        下下、下右、右下、右右

为什么下面四个状态转移方程能代表四种状态?

原因是,因为k 变小了1,先不看最后一步,如果i变小1,则j就不用变;如果i没有变,则j就需要变小1;
上述两种情况刚好对应了最后一步是向下、右走,的横纵坐标变化情况,又因为是两次一起走,故有四种情况。

x = max(x, f[k - 1][i1 - 1][i2 - 1] + t);   //下 下
x = max(x, f[k - 1][i1 - 1][i2] + t);       //下 右
x = max(x, f[k - 1][i1][i2 - 1] + t);       //右 下
AC代码
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 15;

int n;
int f[N * 2][N][N], g[N][N];

int main()
{
    cin >> n;

    int a, b, c;
    while (cin >> a >> b >> c, a || b || c) g[a][b] = c;

    for (int k = 2; k <= n + n; k ++)   //枚举横纵坐标之和
        for (int i1 = 1; i1 <= n; i1 ++)    //枚举第一次走的横坐标
            for (int i2 = 1; i2 <= n; i2 ++)    //枚举第二次走的横坐标
            {
                int j1 = k - i1, j2 = k - i2;   //计算出两次走的纵坐标
                if (j1 >= 1 && j1 <= n && j2 >= 1 && j2 <= n)
                {
                    int t = g[i1][j1];  //如果两个坐标相等,只加一次,因为第二次走这里,已经被拿走清空了
                    if (i1 != i2) t += g[i2][j2];   //坐标不相同,就两个位置全加上
                    int &x = f[k][i1][i2];
                    x = max(x, f[k - 1][i1 - 1][i2 - 1] + t);   //下 下
                    x = max(x, f[k - 1][i1 - 1][i2] + t);       //下 右
                    x = max(x, f[k - 1][i1][i2 - 1] + t);       //右 下
                    x = max(x, f[k - 1][i1][i2] + t);            //右 右
                }
            }

    printf("%d\n", f[n + n][n][n]);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胤凯o

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值