Daily Practice 11th:Codeforces Round #745 (Div. 2)(A,B)

VP*11;

rating:800--1200

这一场好难啊qwq

A. CQXYM Count Permutations

给出2*n的permutation数组,问满足p[i]<p[i+1]至少有n组的序列有几种。

思路:最多满足条件的组数时是{1,2,3,......2*n},最少满足条件的组数是{2*n,2*n-1,......,2,1},所以可以推测,满足至少n个和不满足n个的情况是全排列的一半一半,看到很多题解求逆元,其实这里是不必要的,求全排列是2*n*(2*n-1)*......*3*2*1,最后要除以2,所以只需要从3开始乘即可,乘一次对1e9+7取一次模。

AC Code:

#include <bits/stdc++.h>
#pragma GCC optimize(2)

template <typename T>
inline void read(T &x) {
	x = 0;
	int f = 1;
	char ch = getchar();
	while (!isdigit(ch)) {
		if (ch == '-')
			f = -1;
		ch = getchar();
	}
	while (isdigit(ch)) {
		x = x * 10 + ch - '0', ch = getchar();
	}
	x *= f;
}

template <typename T>
void write(T x) {
	if (x < 0)
		putchar('-'), x = -x;
	if (x > 9)
		write(x / 10);
	putchar(x % 10 + '0');
}

#define INF 0x3f3f3f3f
typedef long long ll;
const double PI = acos(-1);
const double eps = 1e-6;
const int mod = 1e9 + 7;
const int N = 1e6 + 5;
int t, n;

int main() {
//	freopen("test.in","r",stdin);
//  freopen("output.in", "w", stdout);
	std::ios::sync_with_stdio(false);
	std::cin.tie(0);
	std::cin >> t;
	while (t--) {
		std::cin >> n;
		ll ans = 1;
		for (ll i = 3; i <= 2 * n; i++) {
			ans = ans * i % mod;
		}
		std::cout << ans << '\n';
	}
	return 0;
}

B. Diameter of Graph

要用n个节点,m条边,组成直径严格小于k-1的无向连通图,对于每组n,m,k,问是否可以组成满足条件的图。

思路:要想组成连通图,至少需要n-1条边,先把所有节点都与1节点相连,这样得到一个直径为2的无向连通图,若想令其为直径1,则再需要任意两节点再连一条边即可,则共需要C(n,2)条边(边最多的情况!),注意n==1时的特判。

AC Code:

#include <bits/stdc++.h>
#pragma GCC optimize(2)

template <typename T>
inline void read(T &x) {
	x = 0;
	int f = 1;
	char ch = getchar();
	while (!isdigit(ch)) {
		if (ch == '-')
			f = -1;
		ch = getchar();
	}
	while (isdigit(ch)) {
		x = x * 10 + ch - '0', ch = getchar();
	}
	x *= f;
}

template <typename T>
void write(T x) {
	if (x < 0)
		putchar('-'), x = -x;
	if (x > 9)
		write(x / 10);
	putchar(x % 10 + '0');
}

#define INF 0x3f3f3f3f
typedef long long ll;
const double PI = acos(-1);
const double eps = 1e-6;
const int mod = 1e9 + 7;
const int N = 1e6 + 5;
int t;
ll n, m, k;

int main() {
//	freopen("test.in","r",stdin);
//  freopen("output.in", "w", stdout);
	std::ios::sync_with_stdio(false);
	std::cin.tie(0);
	std::cin >> t;
	while (t--) {
		std::cin >> n >> m >> k;
		if (m < n - 1) {
			std::cout << "NO" << '\n';
			continue;
		}
		if (n == 0) {
			std::cout << (k >= 1 ? "YES" : "NO") << '\n';
		} else {
			if (m == (n - 1)*n / 2 && ((n == 1 && k >= 2) || (n > 1 && k >= 3)))
				std::cout << "YES" << '\n';
			else if (m < (n - 1)*n / 2 && k > 3)
				std::cout << "YES" << '\n';
			else
				std::cout << "NO" << '\n';
		}
	}
	return 0;
}

若有错误请指教,谢谢!

orzorz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值