136.只出现一次的数字
必须设计并实现线性时间复杂度的算法来解决此问题,且该算法只使用常量额外空间。
遇到对数字的操作且要求线性时间复杂度的,首要考虑的是运算问题。
数组中的全部元素的异或(^)运算结果即为数组中只出现一次的数字。
1.任何数和 0 做异或运算,结果仍然是原来的数,即 a⊕0=a。
2.任何数和其自身做异或运算,结果是 00,即 a⊕a=0。
3.异或运算满足交换律和结合律,即 a⊕b⊕a=b⊕a⊕a=b⊕(a⊕a)=b⊕0=b。
15.三数之和 a+b+c=0;关键是怎么去重
两层for循环就可以确定 a 和b 的数值了,可以使用哈希法来确定 0-(a+b) 是否在 数组里出现过,但是题目中说的不可以包含重复的三元组。(注意,输出的顺序和三元组的顺序并不重要。)
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
// 找出a + b + c = 0
// a = nums[i], b = nums[j], c = -(a + b)
for (int i = 0; i < nums.size(); i++) {
// 排序之后如果第一个元素已经大于零,那么不可能凑成三元组
if (nums[i] > 0) {
break;
}
if (i > 0 && nums[i] == nums[i - 1]) { //三元组元素a去重
continue;
}
unordered_set<int> set;
for (int j = i + 1; j < nums.size(); j++) {
if (j > i + 2&& nums[j] == nums[j-1]&& nums[j-1] ==
nums[j-2]) { // 三元组元素b去重
continue;
}
int c = 0 - (nums[i] + nums[j]);
if (set.find(c) != set.end()) {
result.push_back({nums[i], nums[j], c});
set.erase(c);// 三元组元素c去重
} else {
set.insert(nums[j]);
}
}
}
return result;
}
双指针:
首先将数组排序,
一层for循环,i从下标0的地方开始,同时定一个下标left 定义在i+1的位置上,定义下标right 在数组结尾的位置上。依然还是在数组中找到 abc 使得a + b +c =0,这里相当于 a = nums[i] b = nums[left] c = nums[right]。
如果nums[i] + nums[left] + nums[right] > 0 就说明 此时三数之和大了,因为数组是排序后了,所以right下标就应该向左移动,这样才能让三数之和小一些。
如果 nums[i] + nums[left] + nums[right] < 0 说明 此时 三数之和小了,left 就向右移动,才能让三数之和大一些,直到left与right相遇为止。