1.证明命题9.1
1. ∵ G → H 是 同 构 映 射 , 所 以 G 和 H 是 同 构 的 , ∵ ϕ − 1 也 是 双 射 , 且 G 和 H 是 同 构 的 ∴ ϕ − 1 : H → G 也 是 同 构 . 2. ∵ G → H 是 双 射 , 显 然 满 足 一 一 对 应 ∴ ∣ G ∣ = ∣ H ∣ 3. ∵ 同 构 , ∴ 任 取 a , b ∈ G , 有 ϕ ( a ⋅ b ) = ϕ ( a ) ∘ ϕ ( b ) ∵ G 是 阿 贝 尔 群 , ∴ ϕ ( a ⋅ b ) = ϕ ( b ⋅ a ) = ϕ ( b ) ∘ ϕ ( a ) ∴ ϕ ( a ) ∘ ϕ ( b ) = ϕ ( b ) ∘ ϕ ( a ) ∴ H 也 是 阿 贝 尔 群 . 4. ∵ G 是 循 环 群 , ∴ 存 在 g 是 G 的 生 成 元 ∵ G → G 是 同 构 , ∴ ϕ ( g 2 ) = ϕ ( g ⋅ g ) = ϕ ( g ) ∘ ϕ ( g ) = ϕ ( g ) 2 ϕ ( g n ) 同 理 , ∴ ∃ ϕ ( g ) 为 H 的 生 成 元 , ∴ H 也 是 循 环 群 5. ∵ 这 是 一 种 双 射 , 一 一 对 应 ∴ G 的 子 集 G ′ 对 应 于 H 的 子 集 H ′ , 阶 都 是 n 封 闭 性 : 设 ϕ ( a ) , ϕ ( b ) ∈ H , ∴ a , b ∈ G , a b ∈ G ∵ ϕ ( a ⋅ b ) = ϕ ( a ) ∘ ϕ ( b ) ∴ ϕ ( a ) ∘ ϕ ( b ) ∈ G 封 闭 性 得 证 结 合 律 : 显 然 满 足 单 位 元 : ∵ a , e ∈ G , ∴ ϕ ( a ) , ϕ ( e ) ∈ H , ϕ ( e ⋅ a ) = ϕ ( a ) = ϕ ( a ) ∘ ϕ ( e ) 即 ϕ ( e ) 是 单 位 元 逆 元 : ∵ a , a − 1 ∈ G , ∴ ϕ ( a ) , ϕ ( a − 1 ) ∈ H ϕ ( a ⋅ a − 1 ) = ϕ ( e ) = ϕ ( a ) ∘ ϕ ( a − 1 ) 即 存 在 逆 元 . 1.\because G\rightarrow H是同构映射,所以G和H是同构的,\\ \because \phi^{-1}也是双射,且G和H是同构的\\ \therefore\phi^{-1}:H\rightarrow G也是同构.\\ 2.\because G\rightarrow H是双射,显然满足一一对应\\ \therefore |G|=|H|\\ 3.\because 同构,\therefore任取a,b\in G,有\phi(a\cdot b)=\phi(a)\circ\phi(b)\\ \because G是阿贝尔群,\therefore\phi(a\cdot b)=\phi(b\cdot a)=\phi(b)\circ\phi(a)\\ \therefore \phi(a)\circ\phi(b)=\phi(b)\circ\phi(a)\\ \therefore H也是阿贝尔群.\\ 4.\because G是循环群,\therefore 存在g是G的生成元\\ \because G\rightarrow G是同构,\\ \therefore\phi(g^2)=\phi(g\cdot g)=\phi(g)\circ\phi(g)=\phi(g)^2\\ \phi(g^n)同理,\therefore\exist \phi(g)为H的生成元,\\ \therefore H也是循环群\\ 5.\because 这是一种双射,一一对应\\ \therefore G的子集G'对应于H的子集H',阶都是n\\ 封闭性:\\设\phi(a),\phi(b)\in H,\\ \therefore a,b\in G,ab\in G\\ \because \phi(a\cdot b)=\phi(a)\circ\phi(b)\\ \therefore\phi(a)\circ\phi(b)\in G \\封闭性得证\\ 结合律:显然满足\\ 单位元:\\ \because a,e\in G,\therefore \phi(a),\phi(e)\in H,\\ \phi(e\cdot a)=\phi(a)=\phi(a)\circ\phi(e)\\ 即\phi(e)是单位元\\ 逆元:\\ \because a,a^{-1}\in G,\therefore \phi(a),\phi(a^{-1})\in H\\ \phi(a\cdot a^{-1})=\phi(e)=\phi(a)\circ\phi(a^{-1})\\ 即存在逆元. 1.∵G→H是同构映射,所以G和H是同构的,∵ϕ−1也是双射,且G和H是同构的∴ϕ−1:H→G也是同构.2.∵G→H是双射,显然满足一一对应∴∣G∣=∣H∣3.∵同构,∴任取a,b∈G,有ϕ(a⋅b)=ϕ(a)∘ϕ(b)∵G是阿贝尔群,∴ϕ(a⋅b)=ϕ(b⋅a)=ϕ(b)∘ϕ(a)∴ϕ(a)∘ϕ(b)=ϕ(b)∘ϕ(a)∴H也是阿贝尔群.4.∵G是循环群,∴存在g是G的生成元∵G→G是同构,∴ϕ(g2)=ϕ(g⋅g)=ϕ(g)∘ϕ(g)=ϕ(g)2ϕ(gn)同理,∴∃ϕ(g)为H的生成元,∴H也是循环群5.∵这是一种双射,一一对应∴G的子集G′对应于H的子集H′,阶都是n封闭性:设ϕ(a),ϕ(b)∈H,∴a,b∈G,ab∈G∵ϕ(a⋅b)=ϕ(a)∘ϕ(b)∴ϕ(a)∘ϕ(b)∈G封闭性得证结合律:显然满足单位元:∵a,e∈G,∴ϕ(a),ϕ(e)∈H,ϕ(e⋅a)=ϕ(a)=ϕ(a)∘ϕ(e)即ϕ(e)是单位元逆元:∵a,a−1∈G,∴ϕ(a),ϕ(a−1)∈Hϕ(a⋅a−1)=ϕ(e)=ϕ(a)∘ϕ(a−1)即存在逆元.
2.给出完整证明
设 群 G 是 一 个 无 限 阶 的 循 环 群 , g ∈ G 是 生 成 元 。 定 义 ϕ : Z n → G 为 ϕ : n → g n , 则 ϕ ( m + n ) = g m + n = g m g n = ϕ ( m ) ϕ ( n ) . 然 后 证 明 ϕ 是 双 射 : ( 1 ) 单 射 : ∀ g a , g b ∈ G , 总 存 在 a , b ∈ Z , 若 g a = g b , 则 a = b , 满 足 单 射 。 ( 2 ) 满 射 : 对 于 ∀ g n ∈ G , 总 存 在 n ∈ Z 使 得 ϕ ( n ) = g n , 满 足 满 射 。 设群G是一个无限阶的循环群,g\in G是生成元。\\ 定义\phi:Z_n\rightarrow G 为\phi:n\rightarrow g^n,\\ 则\phi(m+n)=g^{m+n}=g^mg^n=\phi(m)\phi(n).\\ 然后证明\phi是双射:\\ (1)单射:\forall g^a,g^b\in G,总存在a,b\in Z,\\ 若g^a=g^b,则a=b,满足单射。\\ (2)满射:对于\forall g^n\in G,总存在n\in Z\\ 使得\phi(n)=g^n,满足满射。 设群G是一个无限阶的循环群,g∈G是生成元。定义ϕ:Zn→G为ϕ:n→gn,则ϕ(m+n)=gm+n=gmgn=ϕ(m)ϕ(n).然后证明ϕ是双射:(1)单射:∀ga,gb∈G,总存在a,b∈Z,若ga=gb,则a=b,满足单射。(2)满射:对于∀gn∈G,总存在n∈Z使得ϕ(n)=gn,满足满射。