CINTA作业八

在这里插入图片描述
∀ a 为 Z p ∗ 的生成元, ∴ a p − 1 ≡ 1   m o d   p , 且 p − 1 是使之成立的最小值 ∵ p 是奇素数,根据欧拉准则 若 a 是模 p 的二次剩余,则 a ( p − 1 ) / 2 ≡ 1   m o d   p , ∵ ( p − 1 ) / 2 < p − 1 ,与 p − 1 是最小值矛盾, ∴ p 是模 p 的二次非剩余 \forall a为Z^*_p的生成元,\\ \therefore a^{p-1}\equiv 1 \bmod p,且p-1是使之成立的最小值\\ \because p是奇素数,根据欧拉准则\\ 若a是模p的二次剩余,则a^{(p-1)/2}\equiv1\bmod p,\\ \because (p-1)/2<p-1,与p-1是最小值矛盾,\\ \therefore p是模p的二次非剩余 aZp的生成元,ap11modp,p1是使之成立的最小值p是奇素数,根据欧拉准则a是模p的二次剩余,则a(p1)/21modp,(p1)/2<p1,与p1是最小值矛盾,p是模p的二次非剩余
在这里插入图片描述

( 1 ) 定义从 Z p ∗ 到 Z p ∗ 的映射 ϕ , ϕ ( a ) = a ( p − 1 ) / 2 ∵ ϕ ( a ⋅ b ) = ( a b ) ( p − 1 ) / 2 = a ( p − 1 ) / 2 b ( p − 1 ) / 2 = ϕ ( a ) ∘ ϕ ( b ) ∴ 满足群同态 很明显, ϕ ( a ) 中的单位元是 a 0 = 1 , ∴ K e r ϕ = ϕ − 1 ( 1 ) 为 ∀ a ∈ K e r ϕ , 使得 a ( p − 1 ) / 2 = 1 的集合 ( 2 ) 定义从在 Z p ∗ 到 H = { − 1 , 1 } 的映射 ψ , ψ ( a ) = ( a p ) ∵ ψ ( a ⋅ b ) = ( a b p ) = ( a p ) ( b p ) = ψ ( a ) ∘ ψ ( b ) ∴ 明显 ψ 满足同态,且是满同态 很明显, ψ ( a ) 中的单位元是 1 ∴ K e r ψ = ψ − 1 ( 1 ) 为 ∀ a ∈ K e r ψ , 使得 ( a b ) = 1 , ( 3 ) ∀ g ∈ K e r ψ , 明显 H 的单位元为 1 , ∵ ∃ x ∈ H , 使得 x 2 ≡ 1   m o d   p , 且根据满射, ∃ x ∈ Z p ∗ , 使得 x 2 ≡ g   m o d   p ∴ g ( p − 1 ) / 2 ≡ x p − 1   m o d   , ∵ 根据费马小定理, x p − 1 ≡ 1   m o d   p ∴ g ( p − 1 ) / 2 ≡ 1   m o d   p , 即 K e r ψ ⊂ K e r ϕ ( 4 ) ∀ g ∈ K e r ϕ , 有 g ( p − 1 ) / 2 = 1 , ∴ ( g 1 2 ) p − 1 ≡ 1   m o d   p , 根据费马小定理是成立的 ∴ ∃ x ∈ Z p ∗ 使得 x 2 ≡ g   m o d   p , ∴ g ∈ Q R p , 即 K e r ϕ ⊂ K e r ψ ( 5 ) ∴ K e r ϕ = K e r ψ 根据第一同构定理 Z p ∗ / K e r ϕ 与 ϕ ( Z p ∗ ) 同构 Z p ∗ / K e r ψ 与 ψ ( Z p ∗ ) 同构 ∴ ϕ ( Z p ∗ ) 与 ψ ( Z p ∗ ) 同构 ∴ ( a p ) ≡ a ( p − 1 ) 2   m o d   p (1)定义从Z^*_p到Z^*_p的映射\phi,\phi(a)=a^{(p-1)/2}\\ \because\phi(a\cdot b)=(ab)^{(p-1)/2}=a^{(p-1)/2}b^{(p-1)/2}=\phi(a)\circ \phi(b)\\ \therefore满足群同态\\ 很明显,\phi(a)中的单位元是a^0=1,\\ \therefore Ker\phi=\phi^{-1}(1)为\forall a\in Ker\phi,使得a^{(p-1)/2}=1的集合\\ (2)定义从在Z^*_p到H=\{-1,1\}的映射\psi,\psi(a)=(\frac{a}{p})\\ \because\psi(a\cdot b)=(\frac{ab}{p})=(\frac{a}{p})(\frac{b}{p})=\psi(a)\circ\psi(b)\\ \therefore明显\psi满足同态,且是满同态\\ 很明显,\psi(a)中的单位元是1\\ \therefore Ker\psi=\psi^{-1}(1)为\forall a\in Ker\psi,使得(\frac{a}{b})=1,\\ (3)\forall g\in Ker\psi,明显H的单位元为1,\\ \because \exist x\in H,使得x^2\equiv 1\bmod p,且根据满射,\\ \exist x\in Z^*_p,使得x^2\equiv g\bmod p\\ \therefore g^{(p-1)/2}\equiv x^{p-1}\bmod,\\ \because 根据费马小定理,x^{p-1}\equiv 1\bmod p\\ \therefore g^{(p-1)/2}\equiv 1\bmod p,即Ker\psi\subset Ker\phi\\ (4)\forall g\in Ker\phi,有g^{(p-1)/2}=1,\\ \therefore (g^{\frac{1}{2}})^{p-1}\equiv 1\bmod p,根据费马小定理是成立的\\ \therefore \exist x\in Z^*_p使得x^2\equiv g\bmod p,\\ \therefore g\in QR_p,即Ker\phi\subset Ker\psi\\ (5)\therefore Ker\phi=Ker\psi\\ 根据第一同构定理\\ Z^*_p/Ker\phi与\phi(Z^*_p)同构\\ Z^*_p/Ker\psi与\psi(Z^*_p)同构\\ \therefore \phi(Z^*_p)与\psi(Z^*_p)同构\\ \therefore (\frac{a}{p})\equiv a^{\frac{(p-1)}{2}}\bmod p (1)定义从ZpZp的映射ϕ,ϕ(a)=a(p1)/2ϕ(ab)=(ab)(p1)/2=a(p1)/2b(p1)/2=ϕ(a)ϕ(b)满足群同态很明显,ϕ(a)中的单位元是a0=1,Kerϕ=ϕ1(1)aKerϕ,使得a(p1)/2=1的集合(2)定义从在ZpH={1,1}的映射ψ,ψ(a)=(pa)ψ(ab)=(pab)=(pa)(pb)=ψ(a)ψ(b)明显ψ满足同态,且是满同态很明显,ψ(a)中的单位元是1Kerψ=ψ1(1)aKerψ,使得(ba)=1,(3)gKerψ,明显H的单位元为1xH,使得x21modp,且根据满射,xZp,使得x2gmodpg(p1)/2xp1mod,根据费马小定理,xp11modpg(p1)/21modp,KerψKerϕ(4)gKerϕ,g(p1)/2=1,(g21)p11modp,根据费马小定理是成立的xZp使得x2gmodp,gQRp,KerϕKerψ(5)Kerϕ=Kerψ根据第一同构定理Zp/Kerϕϕ(Zp)同构Zp/Kerψψ(Zp)同构ϕ(Zp)ψ(Zp)同构(pa)a2(p1)modp

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值