字符串——匹配统计(kmp扩展应用)

传送门:160. 匹配统计 - AcWing题库

kmp思路:

1.两个字符串a,b,对b先求一遍kmp,然后和a做一遍匹配,可以求出以每个a[i]为终点的字符串和b的前缀匹配的最大长度,设i的最大匹配为j,则有,从i-j+1开始的后缀与b匹配的最小长度都是j,有可能会大于j。若以i结尾的字符串与b的最大匹配是j,则i结尾的字符串与b用next[j]个字符匹配时也是相等的,next[next[j]]也满足(next数组的性质)。

也就是说,在算出长度为j的同时,也会多出next[j]的匹配长度。

设一个f[i]是匹配长度至少是i的后缀的数量,匹配长度是i的后缀的数量=f[i]-f[i+1].

f[i]求法——i从大到小,f[ne[i]]+=f[i]。

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef pair<int,int>PII;
const int N=2e5+10;
int n,m,q;
char a[N],b[N];
int ne[N];
int f[N];
int main()
{
    scanf("%d%d%d",&n,&m,&q);
    scanf("%s%s",a+1,b+1);
    for(int i=2,j=0;i<=m;i++)
    {
        while(j&&b[i]!=b[j+1]) j=ne[j];
        if(b[i]==b[j+1]) j++;
        ne[i]=j;
    }

    for(int i=1,j=0;i<=n;i++)
    {
        while(j&&a[i]!=b[j+1]) j=ne[j];
        if(a[i]==b[j+1]) j++;
        f[j]++;
    }

    for(int i=m;i;i--) f[ne[i]]+=f[i];

    while(q--)
    {
        int x;
        scanf("%d",&x);
        cout<<f[x]-f[x+1]<<endl;
    }
    return 0;
}

哈希做法:

思路:枚举a的每一个字符为开头,二分匹配长度,最后对应长度累加1;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef pair<int,int>PII;
typedef unsigned long long ull;
const int N=2e5+10,pp=131;
char a[N];
char b[N];
ull f1[N],f2[N];
int n,m,q;
ull p[N];
int cnt[N];
int get(ull h[],int l,int r)
{
    return h[r]-h[l-1]*p[r-l+1];
}
int main()
{
    scanf("%d%d%d",&n,&m,&q);
    scanf("%s",a+1);
    scanf("%s",b+1);

    p[0]=1;

    for(int i=1;i<=n;i++)
    {
        f1[i]=f1[i-1]*pp+a[i]-'a'+1;
        p[i]=p[i-1]*pp;
    }
    for(int i=1;i<=m;i++)
    {
        f2[i]=f2[i-1]*pp+b[i]-'a'+1;
    }
    for(int i=1;i<=n;i++)
    {
        int l=0,r=min(n-i+1,m),mid;
        while(l<r)
        {
            mid=l+r>>1;
            if(get(f1,i,i+mid)!=get(f2,1,mid+1)) r=mid;
            else l=mid+1;
        }
        cnt[r]++;
    }
    int k;
    for(int i=1;i<=q;i++)
    {
        scanf("%d",&k);
        cout<<cnt[k]<<endl;
    }


    return 0;
}

### BZOJ1461 字符串匹配 题解 针对BZOJ1461字符串匹配问题,解决方法涉及到了KMP算法以及树状数组的应用。对于此类问题,朴素的算法无法满足时间效率的要求,因为其复杂度可能高达O(ML²),其中M代表模式串的数量,L为平均长度[^2]。 为了提高效率,在这个问题中采用了更先进的技术组合——即利用KMP算法来预处理模式串,并通过构建失配树(也称为失败指针),使得可以在主串上高效地滑动窗口并检测多个模式串的存在情况。具体来说: - **前缀函数与KMP准备阶段**:先对每一个给定的模式串执行一次KMP算法中的pre_kmp操作,得到各个模式串对应的next数组。 - **建立失配树结构**:基于所有模式串共同构成的一棵Trie树基础上进一步扩展成带有失配链接指向的AC自动机形式;当遇到某个节点不存在对应字符转移路径时,则沿用该处失配链路直至找到合适的目标或者回到根部重新开始尝试其他分支。 - **查询过程**:遍历整个待查文本序列的同时维护当前状态处于哪一层级下的哪个子结点之中,每当成功匹配到完整的单词就更新计数值至相应位置上的f_i变量里去记录下这一事实。 下面是简化版Python代码片段用于说明上述逻辑框架: ```python from collections import defaultdict def build_ac_automaton(patterns): trie = {} fail = [None]*len(patterns) # 构建 Trie 树 for i,pattern in enumerate(patterns): node = trie for char in pattern: if char not in node: node[char]={} node=node[char] node['#']=i queue=[trie] while queue: current=queue.pop() for key,value in list(current.items()): if isinstance(value,int):continue if key=='#': continue parent=current[key] p=fail[current is trie and 0 or id(current)] while True: next_p=p and p.get(key,None) if next_p:break elif p==0: value['fail']=trie break else:p=fail[id(p)] if 'fail'not in value:value['fail']=next_p queue.append(parent) return trie,fail def solve(text, patterns): n=len(text) m=len(patterns) f=[defaultdict(int)for _in range(n)] ac_trie,_=build_ac_automaton(patterns) state=ac_trie for idx,char in enumerate(text+'$',start=-1): while True: trans=state.get(char,state.get('#',{}).get('fail')) if trans!=None: state=trans break elif '#'in state: state[state['#']['fail']] else: state=ac_trie cur_state=state while cur_state!={}and'#'in cur_state: matched_pattern_idx=cur_state['#'] f[idx][matched_pattern_idx]+=1 cur_state=cur_state['fail'] result=[] for i in range(len(f)-1): row=list(f[i].values()) if any(row): result.extend([sum((row[:j+1]))for j,x in enumerate(row[::-1])if x>0]) return sum(result) patterns=["ab","bc"] text="abc" print(solve(text,text)) #[^4] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值