kmp思路:
1.两个字符串a,b,对b先求一遍kmp,然后和a做一遍匹配,可以求出以每个a[i]为终点的字符串和b的前缀匹配的最大长度,设i的最大匹配为j,则有,从i-j+1开始的后缀与b匹配的最小长度都是j,有可能会大于j。若以i结尾的字符串与b的最大匹配是j,则i结尾的字符串与b用next[j]个字符匹配时也是相等的,next[next[j]]也满足(next数组的性质)。
也就是说,在算出长度为j的同时,也会多出next[j]的匹配长度。
设一个f[i]是匹配长度至少是i的后缀的数量,匹配长度是i的后缀的数量=f[i]-f[i+1].
f[i]求法——i从大到小,f[ne[i]]+=f[i]。
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef pair<int,int>PII;
const int N=2e5+10;
int n,m,q;
char a[N],b[N];
int ne[N];
int f[N];
int main()
{
scanf("%d%d%d",&n,&m,&q);
scanf("%s%s",a+1,b+1);
for(int i=2,j=0;i<=m;i++)
{
while(j&&b[i]!=b[j+1]) j=ne[j];
if(b[i]==b[j+1]) j++;
ne[i]=j;
}
for(int i=1,j=0;i<=n;i++)
{
while(j&&a[i]!=b[j+1]) j=ne[j];
if(a[i]==b[j+1]) j++;
f[j]++;
}
for(int i=m;i;i--) f[ne[i]]+=f[i];
while(q--)
{
int x;
scanf("%d",&x);
cout<<f[x]-f[x+1]<<endl;
}
return 0;
}
哈希做法:
思路:枚举a的每一个字符为开头,二分匹配长度,最后对应长度累加1;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef pair<int,int>PII;
typedef unsigned long long ull;
const int N=2e5+10,pp=131;
char a[N];
char b[N];
ull f1[N],f2[N];
int n,m,q;
ull p[N];
int cnt[N];
int get(ull h[],int l,int r)
{
return h[r]-h[l-1]*p[r-l+1];
}
int main()
{
scanf("%d%d%d",&n,&m,&q);
scanf("%s",a+1);
scanf("%s",b+1);
p[0]=1;
for(int i=1;i<=n;i++)
{
f1[i]=f1[i-1]*pp+a[i]-'a'+1;
p[i]=p[i-1]*pp;
}
for(int i=1;i<=m;i++)
{
f2[i]=f2[i-1]*pp+b[i]-'a'+1;
}
for(int i=1;i<=n;i++)
{
int l=0,r=min(n-i+1,m),mid;
while(l<r)
{
mid=l+r>>1;
if(get(f1,i,i+mid)!=get(f2,1,mid+1)) r=mid;
else l=mid+1;
}
cnt[r]++;
}
int k;
for(int i=1;i<=q;i++)
{
scanf("%d",&k);
cout<<cnt[k]<<endl;
}
return 0;
}