阿轩在纸上写了两个字符串,分别记为A和B。
利用在数据结构与算法课上学到的知识,他很容易地求出了“字符串A从任意位置开始的后缀子串”与“字符串B”匹配的长度。
不过阿轩是一个勤学好问的同学,他向你提出了Q个问题:
在每个问题中,他给定你一个整数x,请你告诉他有多少个位置,满足“字符串A从该位置开始的后缀子串”与B匹配的长度恰好为x。
例如:A=aabcde,B=ab,则A有aabcde、abcde、bcde、cde、de、e这6个后缀子串,它们与B=ab的匹配长度分别是1、2、0、0、0、0。
因此A有4个位置与B的匹配长度恰好为0,有1个位置的匹配长度恰好为1,有1个位置的匹配长度恰好为2。
输入格式
第一行输入三个整数N,M,Q,分别表示A串长度、B串长度、问题个数。
第二行输入字符串A,第三行输入字符串B。
接下来Q行每行输入1个整数x,表示一个问题。
输出格式
输出共Q行,依次表示每个问题的答案。
数据范围
1≤N,M,Q,x≤200000
输入样例:
6 2 5
aabcde
ab
0
1
2
3
4
输出样例:
4
1
1
0
0
思路:首先对b(模式串)用KMP求出Next数组,Next[i]表示模式串以i为结尾下标的前缀子串的最长相同前后缀的长度,设Next[i]=j,则根据KMP的定义,长度为Next[j]的前后缀长度也是相同的,所以在用KMP对a(主串)和b(模式串)进行匹配时,可以用一个minn[i]数组记录匹配长度至少为i的相同前后缀个数,因为长度为j的相同前后缀中的Next[j]长度的前后缀也匹配,也就是说Next[i]满足匹配的长度minn[i]则Next[Next[i]]也满足匹配长度minn[Next[i]],进而可以得到Next[i],Next[Next[i]],。。。的一种拓扑序列,即只要从后往前依次累加上其前驱结点的值,即可得到每个minn[i],最终,匹配长度恰好为x的个数=匹配长度至少为x的个数minn[x]-匹配长度至少为x+1的个数minn[x+1].
完整代码:
#include <iostream>
#include <cstring>
using namespace std;
const int maxn=2e5+5;
int n,m,q;
char a[maxn],b[maxn];
int Next[maxn],minn[maxn];
int main()
{
cin>>n>>m>>q;
scanf("%s%s",a+1,b+1);
//对b串(模式串)用KMP求Next[]数组:
for(int i=2,j=0;i<=m;i++){
while(j&&b[i]!=b[j+1]) j=Next[j];
if(b[i]==b[j+1]) j++;
Next[i]=j;
}
//对a(主串)和b(模式串)用KMP匹配:
for(int i=1,j=0;i<=n;i++){
while(j&&a[i]!=b[j+1]) j=Next[j];
if(a[i]==b[j+1]) j++;
minn[j]++;
}
for(int i=m;i;i--) minn[Next[i]]+=minn[i];
while(q--){
int x;
cin>>x;
cout<<minn[x]-minn[x+1]<<endl;
}
return 0;
}