洛谷P1024[NOIP2001]一元三次方程(二分)

35 篇文章 2 订阅
5 篇文章 0 订阅

 

 

 AC代码如下:

#include<bits/stdc++.h>
using namespace std;
//一元三次方程
double a,b,c,d;//全局变量 方便传进jisuan函数使用
double jisuan(double x)
{
    return a*x*x*x+b*x*x+c*x+d;
}
int main()
{

    cin>>a>>b>>c>>d;
    int sum;
    double l,r;
    double m;
    for(int i=-100; i<=100; i++) //由于每个跟差值绝对值大于1 所以可以以1
        //为跨度进行区间判断
    {
        double l=i;
        r=i+1;
        double x1=jisuan(l);
        double x2=jisuan(r);
        if(!x1)
        {
            sum++;//不能判断右端点 会重复
            if(sum!=3)
                printf("%.2f ",l);
            else
                printf("%.2f",l);//判断左端点是不是0点 是的话直接输出


        }
        if(x1*x2<0)
        {
            while(r-l>0.001)//因为保留两位小数 若两个数差值小于等于0.001
            {
                //则这两个数保留两位小数结果必定相同
                m=(r+l)/2;
                double x3=jisuan(m);
                if(x3*x2<=0)//要加等号 因为二分的点有可能是零点
                {
                    l=m;
                }
                else
                {
                    r=m;
                }

            }
            sum++;
            if(sum!=3)
                printf("%.2f ",l);
            else
                printf("%.2f",l);
        }
        if(sum==3)
        {
            break;//找到三个根就退出循环 节约时间
        }
    }
    return 0;
}

### 回答1: 一元三次方程是指形如ax^3+bx^2+cx+d=的方程,其中a、b、c、d都是已知常数,x是未知数。 求解一元三次方程的一般步骤如下: 1. 将方程化为标准形式,即将x^3系数化为1,即可得到x^3+px^2+qx+r=的形式。 2. 通过代数运算,将方程化为一个二次方程和一个一次方程的组合形式,即x^3+px^2+qx+r=(x-a)(x^2+bx+c)的形式。 3. 解出二次方程x^2+bx+c=的两个根,即可得到三次方程的三个根,分别为a和二次方程的两个根。 求解一元三次方程的具体方法有很多,可以使用牛顿迭代法、三分法、高斯消元法等。在NOI竞赛中,一般使用高斯消元法来求解一元三次方程。 ### 回答2: 一元三次方程是指形如ax³+bx²+cx+d=0的方程,其中a、b、c、d都是已知系数,x是未知数。这是一个高阶多项式方程,求解方法也比较复杂。下面介绍一种较为常用的三次方程求解方法——套用“因式分解法”: 1. 将三次方程“因式分解”的形式,即(ax+b)(cx²+ex+f)=0,其中a、b、c、e、f都是已知系数,x是未知数。 2. 将第二个括号展开,得到cx³+(e+a)c²x+(f+ae+b)c+be=0。 3. 令y=cx,即方程了一个一元二次方程:y²+(e+a)y+(f+ae+b)c/be=0。 4. 解出y,再回代得到x的值。 需要注意的是,如果三次方程有重根或虚根,以上方法不适用,需要采用其他的求解方式。除此之外,还可以利用“维达定理”或牛顿迭代法等算法进行求解。 总之,求解一元三次方程需要掌握多种方法,根据具体情况选择合适的方法进行求解。在解题的过程中,要注意化简、观察特征、分析符号及系数等问题,同时也需要熟悉求根公式和基本的代数计算方法,才能顺利解决问题。 ### 回答3: 一元三次方程是指形如ax^3+bx^2+cx+d=0的方程,其中a、b、c、d为系数,x为未知数。解一元三次方程是高中数学中的一项重要内容,也是竞赛中常出现的题型。 解一元三次方程的方法有很多种,其中比较常用的有以下几种: 1.牛顿迭代法。该方法通常用于求解非线性方程,使用重复求解近似解的方法逼近准确解。但需要注意的是,该方法需要计算一定的导数,因此不太方便手工计算。 2.公式法。一元三次方程也有和一元二次方程一样的求根公式,但通常需要做一定的化简。比如,可以利用单项式恒等变形把一元三次方程化为一元二次方程,然后使用公式求解。 3.因式分解法。有些一元三次方程可以通过因式分解得到解,比如x^3-8=0,可以分解为(x-2)(x^2+2x+4)=0,从而得到三个解x=2、x=-1+i√3、x=-1-i√3。 4.牛顿-拉弗森法。该方法也是一种迭代方法,通常用于求根问题。但由于需要计算导数,因此不太适合手工计算。 总之,解一元三次方程需要根据具体情况选择合适的方法,并且需要注意精度问题,避免出现误差过大的情况。在竞赛中,还需要注意时间限制,尽量选择快速有效的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值