题意:两个长度为 n 的二进制字符串 s 和 t。一次操作可以从 2 到 n - 1 选择一个索引,并且 s i−1 ≠ s i+1,如果si 是 0 则变为 1,是 1 则变为 0。问最少需要几次操作使 s 等于 t,无法实现输出 -1 。
思路:假设 i 是一个可以改变的索引,那么s i-1 异或 si 和 s i+1 异或 si 一定是一个 1 和一个 0,当我们改变 i 的值,si 和前后异或出来的值还是一个1 和一个 0,只是顺序会改变。我们构造一个长度为 n - 1 的字符串s',s'i = si ^ s i+1,同理构造出 t' ,要使 s 等于 t,我们只要能使 s' 等于 t'就可以(因为s0 和 t0,sn 和 tn 一样,否则因为s0 和 sn 的值无法改变就无法实现)。前面我们说明了s' 中 1 和 0 的个数不会改变, 所以当 s' 中 1 的个数不等于 t' 中 1 的个数那么就无法实现,而 1 0, 0 1可以随意改变,所以最小操作次数就是 s' 中所有 1 与 t' 中相应位置 1 距离差的总和。
代码:
#include<bits/stdc++.h>
#define pb push_back
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const int N = 2e5 + 10, P = 1e9 + 7, mod = 998244353;
void solve(){
int n;
string s1, s2;
cin >> n >> s1 >> s2;
vector<int>v1, v2;
for(int i = 0; i < n; i++){
if(s1[i] != s1[i + 1]) v1.pb(i);
if(s2[i] != s2[i + 1]) v2.pb(i);
}
if(s1[0] != s2[0] || s1[n - 1] != s2[n - 1] || v1.size() != v2.size()){
cout << -1 << endl;
return;
}
ll ans = 0;
for(int i = 0; i < v1.size(); i++)
ans += abs(v1[i] - v2[i]);
cout << ans << endl;
}
int main(){
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t;
cin >> t;
while(t--){
solve();
}
return 0;
}