题意:n 个点按瞬时针从 1 到 n 排成一个圆,有一个二进制字符串 s,连接 n - 1 条边使第 i 个点的度数的奇偶性和 si 的奇偶性一样。圆内的边不能有交点。
思路:一共 n - 1 条边,所以总度数和为 2n - 2,小于 2n 并且为偶数,所以当 s 中 1 的个数为奇数或 0 时无解。找到一个点作为树的顶点,顺时针连接,当连接到第一个 1 时,断开。将顶点和下一个点连接,重复刚才的过程,直到连接到顶点的前一个点。注意顶点的前一个点必须是 1。
代码:
#include<bits/stdc++.h>
#define pb push_back
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const int N = 2e5 + 10, P = 1e9 + 7, mod = 998244353;
int n;
int re(int x){
if(x == n + 1) x = 1;
if(!x) x = n;
return x;
}
void solve(){
string s;
cin >> n >> s;
s = " " + s;
int cnt = 0;
for(int i = 1; i <= n; i++)
cnt += s[i] == '1';
if(cnt & 1 || !cnt){
cout << "NO" << endl;
return;
}
cout << "YES" << endl;
int rt = 1;
while(s[re(rt - 1)] != '1') rt++;
for(int i = 1; i <= n; i++)
if(i != rt)
cout << i << " " << (s[re(i - 1)] == '1' ? rt : re(i - 1)) << endl;
}
int main(){
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t;
cin >> t;
while(t--) {
solve();
}
return 0;
}