CodeBat - 程序蝠
码龄3年
关注
提问 私信
  • 博客:22,818
    22,818
    总访问量
  • 20
    原创
  • 37,603
    排名
  • 558
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
  • 加入CSDN时间: 2021-09-27
博客简介:

m0_62361730的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    198
    当月
    0
个人成就
  • 获得613次点赞
  • 内容获得32次评论
  • 获得403次收藏
创作历程
  • 20篇
    2024年
成就勋章
TA的专栏
  • 前端面试常见考题
    1篇
  • 论文阅读
    18篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

JS数组遍历方法大全

JavaScript中有许多种数组遍历方法,每种都有不同的应用场景。简介: 循环是最传统且灵活的数组遍历方式。它允许开发者精确控制循环过程,从设置初始值、条件判断到增量修改。使用示例:优点:完全控制循环的条件与索引适合需要多次修改数据或进行複杂逻辑操作的场景缺点:相较于其他遍历方式,代码稍显繁琐容易出错,如越界或漏掉索引简介: 是数组的内建方法,允许更简洁地遍历数组中的每个元素。它将每个元素依次传递给回调函数。使用示例: 这边写成箭头函数会好看一点:优点:语法简洁,无需手动控制索引读取每个
原创
发布博客 2024.10.13 ·
770 阅读 ·
27 点赞 ·
0 评论 ·
14 收藏

论文阅读:Anchored Densest Subgraph

在图论的研究领域中,子图搜索是一个至关重要的问题。随着数据规模的增长和複杂性的增加,如何在大型图中有效地发现具有特定性质的子图,已成为社交网络分析、推荐系统以及其他图数据处理领域中的核心挑战。密子图搜索(Densest Subgraph Search)是其中一个关键的问题,旨在找出图中密度最高的子图,即平均度数最大的子图。这些子图通常代表了图中高度连接的节点集合,对于社群发现、垃圾链接识别、专家提取等应用场景具有重要价值。
原创
发布博客 2024.08.15 ·
1185 阅读 ·
20 点赞 ·
1 评论 ·
31 收藏

论文阅读:一种基于凸规划的高效有向最密子图发现方法 | SIGMOD 2022

这篇论文的主题是研究如何在有向图中找到密度最高的子图,这个问题被称为有向最密子图(Directed Densest Subgraph, DDS)问题。该问题在许多应用中非常重要,如社交网络分析、社区发现、假粉丝检测等。论文提出了一种基于**凸规划(Convex Programming)**的方法来有效解决DDS问题,并设计了精确和近似算法,这些算法能够在大规模数据集上实现显着的性能提升。DDS问题的目标是在一个给定的有向图中找到一个子图,使其密度在所有子图中是最高的。
原创
发布博客 2024.08.13 ·
1163 阅读 ·
26 点赞 ·
1 评论 ·
16 收藏

论文阅读 - Scaling Up k-Clique Densest Subgraph Detection | SIGMOD 2023

密集子图发现(Densest Subgraph Discovery)是图挖掘领域的一个基础研究方向,并且近年来在多个应用领域得到了广泛研究。特别是在生物学、金融学和社交网络分析等领域,密集子图的发现对理解复杂网络结构和行为具有重要意义。在这些应用中,找到“近似团”(near-clique)尤为关键,因为“近似团”往往反映了正在形成的团结构,或者由于数据噪声或缺失而导致的未完全连接的团。例如,在蛋白质-蛋白质相互作用网络中,发现近似团有助于预测新的蛋白质相互作用,而在社交网络中,这些结构则可能揭示潜在的社交群
原创
发布博客 2024.08.12 ·
1164 阅读 ·
39 点赞 ·
8 评论 ·
24 收藏

论文阅读:Efficient Core Maintenance in Large Bipartite Graphs | SIGMOD 2024

这篇论文主要探讨了如何在大型双向图中高效地维护(𝛼, 𝛽)-核 (bi-core)。(𝛼, 𝛽)-核作为双向图中的一种重要的凝聚子图模型,已在许多实际应用中得到了广泛应用,如产品推荐、欺诈者检测和社区搜索。然而,由于双向图通常是动态的,其顶点和边经常被插入和删除,从头计算(𝛼, 𝛽)-核的成本非常高。
原创
发布博客 2024.08.08 ·
2112 阅读 ·
54 点赞 ·
3 评论 ·
25 收藏

论文阅读报告: 在时间双向图上查询基于时间的的密集子图 | ICDE 2024

本文提出了一个新的模型(α, β, T)-core,用于在时间双向图上寻找凝聚子图。时间双向图中,不同实体之间的关系随着时间的推移而变化。为了提高查询效率,本文提出了顶点分区和时间分区的历史索引(VH-Index和TH-Index),并进一步提出了时间交集索引(TH*-Index)。实验结果表明,本文提出的模型和算法在多个真实数据集上表现出色。时间双向图(Temporal Bipartite Graph)是指在图中存在两类不同的顶点集合,并且这些顶点之间的关系(边)随着时间的推移而变化。
原创
发布博客 2024.08.07 ·
2012 阅读 ·
53 点赞 ·
2 评论 ·
52 收藏

论文阅读: Efficient Core Decomposition over Large Heterogeneous Information Networks | VLDB 2024

该论文提出了一种新的核心分解算法,旨在高效地处理大规模异构信息网络(HIN)。通过该算法,可以识别图中的密集子图,为社区发现和异常检测等实际应用提供了有力支持。论文重点介绍了算法的设计、实现及其在实际数据集上的优越性能。异构信息网络(HIN)是一类复杂的网络,包含多种类型的节点和边。与传统的同构信息网络(只有一种类型的节点和边)不同,HIN能够更真实地表示复杂系统中的多样性和关系。多类型节点:HIN中的节点可以代表不同类型的实体。例如,在学术网络中,节点可以是作者、论文、机构等。多类型边。
原创
发布博客 2024.08.06 ·
792 阅读 ·
31 点赞 ·
1 评论 ·
13 收藏

论文阅读: A Counting-based Approach for Efficient -Clique Densest Subgraph Discovery | SIGMOD 2024

最密子图发现 (DSD) 是图挖掘中的一个基本问题,已被广泛研究并应用于生物学、金融和社交网络等领域。作为DSD的一个典型问题,k-团最密子图 (CDS) 问题旨在从图中检测出一个子图,使得该子图中的 k-团数量与顶点数量的比值最大化。本文提出了一个基于 Frank-Wolfe 算法的新框架,该框架仅需要 k-团计数而非 k-团枚举,从而显着提高了计算效率。本文在14个大规模真实图上进行了广泛的实验,结果显示该算法的效率非常高,并且在相同准确性保证下比现有最先进的算法快了多达七个数量级。
原创
发布博客 2024.08.05 ·
1290 阅读 ·
26 点赞 ·
2 评论 ·
18 收藏

论文阅读:Most Probable Densest Subgraphs

本文提出了一种在不确定图中发现最有可能稠密子图(MPDS)的新方法。不确定图中的每条边都有存在概率,使得计算稠密子图变得複杂。作者定义了稠密子图概率,并证明了计算该概率是#P难的。为了解决这个问题,设计了基于抽样的高效近似算法,并提供了准确性保证。实验结果表明,该方法在生物、社交和金融网络中的应用中具有高效性和实用性。
原创
发布博客 2024.08.02 ·
1094 阅读 ·
36 点赞 ·
2 评论 ·
20 收藏

论文阅读:Scalable Algorithms for Densest Subgraph Discovery

密集子图发现(DSD)作为图数据挖掘的基础问题,旨在从图中找到密度最高的子图。虽然已有许多DSD算法,但它们在处理大规模图时往往不可扩展或效率低下。本文提出了在无向图和有向图上求解DSD问题的高效并行算法,通过优化迭代过程和减少迭代次数来计算核心数。同时引入了新的子图模型——w诱导子图,以避免不必要的枚举,从而提高算法效率。实验结果表明,所提算法在无向图和有向图上的性能均优于现有算法,具有良好的可扩展性和效率。
原创
发布博客 2024.08.01 ·
903 阅读 ·
10 点赞 ·
0 评论 ·
11 收藏

论文阅读:高效的广义最稠密子图发现算法

这篇论文提出了一种高效算法,通过利用广义超模密度定义和𝑐-core模型来加速图中最稠密子图和稠密至少k子图的发现过程。广义超模密度定义统一了多种密度计算方法,使得算法能够适应不同的应用场景,涵盖了多种特定的密度度量。实验结果表明,基于𝑐-core的优化算法在处理大规模图数据时,能够比现有方法快上三个数量级,显着提升了计算效率。此外,这篇论文还研究了具有尺寸约束的稠密子图问题(Dal𝑘S),提出了基于图分解的新算法,实验中该算法在绝大多数情况下接近最优密度。
原创
发布博客 2024.07.31 ·
2112 阅读 ·
49 点赞 ·
1 评论 ·
41 收藏

论文阅读: Efficient Maximum k-Plex Computation over Large Sparse Graphs

这篇论文提出了一种新算法 kPlexS,通过引入新的框架和技术,大大提高了在大型稀疏图上计算最大𝑘-plex 的效率。表中的数据包括预处理时间、启发式计算的𝑘-plex大小(P)、以及简化后的图的顶点数(|Vₖ|)和边数(Eₖ)。结果显示,kPlexS和kPlexF总能在不同时间限制内解决最多的实例,其中kPlexS在50秒内解决的实例数超过了其他算法在1800秒内的结果。结果显示,在给定的时间限制内,kPlexS 算法总是能够比最先进的算法(BnB、Maplex 和 KpLeX)解决更多的图实例。
原创
发布博客 2024.07.29 ·
1218 阅读 ·
34 点赞 ·
3 评论 ·
12 收藏

论文摘要:Efficient Algorithms for Densest Subgraph Discovery on Large Directed Graphs

在很多应用中,例如欺诈检测、社区挖掘和图压缩等,需要从有向图中找到密度最高的子图,这被称为有向最密子图问题(Directed Densest Subgraph, DDS)。DDS问题在社交网络、Web图和知识图谱等领域有着广泛的应用。例如,在社交网络中,可以用来检测假粉丝,在Web图中,可以用来发现网络社区。然而,现有的DDS解决方案在效率和可扩展性方面存在问题。例如,对于一个仅有三千条边的图,一些最好的确定性算法(确定最密子图的算法)需要三天的时间来完成计算。
原创
发布博客 2024.07.29 ·
705 阅读 ·
13 点赞 ·
1 评论 ·
22 收藏

论文阅读-无需验证的高效局部最密子图发现方法

在大规模图中寻找密集子图是一项基础的图挖掘任务,具有许多应用。局部最密子图(LDS)的概念最近被提出,用于识别复盖大图不同区域的多个密集子图。LDS 是其局部区域中密度最高的子图。当前最先进的算法通过迭代计算最密子图并将其从图中删除,然后通过代价高昂的最大流计算来验证每个候选项。尽管有先进的剪枝技术,但验证步骤仍然耗时,特别是对于较大的 k 值。在本文中,我们设计了无验证方法来提高寻找前 k 个 LDS 的效率。
原创
发布博客 2024.07.26 ·
851 阅读 ·
36 点赞 ·
0 评论 ·
16 收藏

CompressGraph: 基于规则的高效并行图分析压缩方法

随着数据爆炸式增长,图数据分析在社交网络、科学计算和数据挖掘等领域变得越来越重要。然而,处理大规模图数据面临着存储和计算资源的挑战。传统的图压缩方法可能会丢失重要信息,影响分析结果的准确性。CompressGraph框架旨在通过规则基压缩技术,在有效压缩图数据的同时保留其结构和信息,实现高效的并行图分析
原创
发布博客 2024.07.25 ·
881 阅读 ·
40 点赞 ·
1 评论 ·
13 收藏

快速理解:高效的k-团最密子图搜索算法

这篇论文提出的PSCTL和CPSample算法在解决大规模网络中的𝑘-团最密子图搜索问题上展现了显着的性能优势。实验结果表明,这些新算法能够大幅提高运行速度,同时保持结果的高准确性,这使得它们在实际应用中具有极大的潜力。PSCTL和CPSample不仅在处理大规模数据集时表现优越,还能有效应对各种不同的网络结构,这意味着它们可以广泛应用于例如社交网络分析、生物信息学、推荐系统和网络安全等领域。
原创
发布博客 2024.07.21 ·
703 阅读 ·
19 点赞 ·
1 评论 ·
18 收藏

理解 DEKG-ILP 模型:提升知识图谱链接预测的新方法

现有的方法主要集中在预测新知识图谱中的封闭链接,即在新图谱内部的链接。DEKG-ILP模型通过结合全局和局部的信息,能够有效预测知识图谱中缺失的桥接链接和封闭链接,从而提升知识图谱的完整性和推理能力。DEKG-ILP模型的成功不仅在于解决了现有方法的局限性,还在于为处理复杂的、动态演变的知识图谱提供了一种有效的方法,具有广泛的应用前景和研究价值。上图展示了断开的新兴知识图谱(DEKG)和原始知识图谱(KG)的一个示例,用于解释桥接链接和封闭链接的概念,虚线表示缺失的链接。提取每个链接周围的局部拓扑信息。
原创
发布博客 2024.07.19 ·
1278 阅读 ·
29 点赞 ·
1 评论 ·
16 收藏

ELPIS: 颠覆性的图结构技术,实现大规模数据的高效相似性搜索

ELPIS 提出了一种新的基于图的索引方法,结合了树结构和图结构的优点,以实现高效的索引构建和近似搜索。
原创
发布博客 2024.07.19 ·
852 阅读 ·
14 点赞 ·
0 评论 ·
8 收藏

GPredictor:基于图嵌入的并发查询性能预测系统

GPredictor 提供了一个创新且高效的并发查询性能预测解决方案,利用图嵌入技术和动态优化方法,显着提升了查询性能预测的准确性和效率。传统的性能预测方法多针对单一查询设计,无法有效处理并发查询的性能预测问题。其准确预测查询执行时间及处理动态工作负载的能力,使其成为数据库管理和优化的强大工具,具有广泛的应用前景和实际价值。总之,GPredictor 不仅树立了查询性能预测的新标准,还为先进的数据库管理和优化开启了新的可能性。是一个基于图嵌入技术的性能预测系统,专为并发和动态工作负载设计。
原创
发布博客 2024.07.18 ·
766 阅读 ·
24 点赞 ·
1 评论 ·
11 收藏

多重网络中密集子图的新算法:S-core方法论

在复杂系统研究中,多重网络(Multilayer Networks,ML)已成为建模多维度互动的重要工具。这种模型在社会网络、生物系统和金融市场等领域具有广泛应用。例如,在社交网络分析中,个体间的互动可能同时涉及社交、专业和兴趣等多个层面。多重网络的概念为我们提供了一个更全面的框架,用以捕捉这些复杂的关系结构。
原创
发布博客 2024.07.16 ·
902 阅读 ·
33 点赞 ·
3 评论 ·
22 收藏
加载更多