- 博客(19)
- 收藏
- 关注
原创 论文阅读:Anchored Densest Subgraph
在图论的研究领域中,子图搜索是一个至关重要的问题。随着数据规模的增长和複杂性的增加,如何在大型图中有效地发现具有特定性质的子图,已成为社交网络分析、推荐系统以及其他图数据处理领域中的核心挑战。密子图搜索(Densest Subgraph Search)是其中一个关键的问题,旨在找出图中密度最高的子图,即平均度数最大的子图。这些子图通常代表了图中高度连接的节点集合,对于社群发现、垃圾链接识别、专家提取等应用场景具有重要价值。
2024-08-15 10:28:03 1156 1
原创 论文阅读:一种基于凸规划的高效有向最密子图发现方法 | SIGMOD 2022
这篇论文的主题是研究如何在有向图中找到密度最高的子图,这个问题被称为有向最密子图(Directed Densest Subgraph, DDS)问题。该问题在许多应用中非常重要,如社交网络分析、社区发现、假粉丝检测等。论文提出了一种基于**凸规划(Convex Programming)**的方法来有效解决DDS问题,并设计了精确和近似算法,这些算法能够在大规模数据集上实现显着的性能提升。DDS问题的目标是在一个给定的有向图中找到一个子图,使其密度在所有子图中是最高的。
2024-08-13 16:49:30 1123 1
原创 论文阅读 - Scaling Up k-Clique Densest Subgraph Detection | SIGMOD 2023
密集子图发现(Densest Subgraph Discovery)是图挖掘领域的一个基础研究方向,并且近年来在多个应用领域得到了广泛研究。特别是在生物学、金融学和社交网络分析等领域,密集子图的发现对理解复杂网络结构和行为具有重要意义。在这些应用中,找到“近似团”(near-clique)尤为关键,因为“近似团”往往反映了正在形成的团结构,或者由于数据噪声或缺失而导致的未完全连接的团。例如,在蛋白质-蛋白质相互作用网络中,发现近似团有助于预测新的蛋白质相互作用,而在社交网络中,这些结构则可能揭示潜在的社交群
2024-08-12 19:44:38 1088 4
原创 论文阅读:Efficient Core Maintenance in Large Bipartite Graphs | SIGMOD 2024
这篇论文主要探讨了如何在大型双向图中高效地维护(𝛼, 𝛽)-核 (bi-core)。(𝛼, 𝛽)-核作为双向图中的一种重要的凝聚子图模型,已在许多实际应用中得到了广泛应用,如产品推荐、欺诈者检测和社区搜索。然而,由于双向图通常是动态的,其顶点和边经常被插入和删除,从头计算(𝛼, 𝛽)-核的成本非常高。
2024-08-08 18:01:07 1886 3
原创 论文阅读报告: 在时间双向图上查询基于时间的的密集子图 | ICDE 2024
本文提出了一个新的模型(α, β, T)-core,用于在时间双向图上寻找凝聚子图。时间双向图中,不同实体之间的关系随着时间的推移而变化。为了提高查询效率,本文提出了顶点分区和时间分区的历史索引(VH-Index和TH-Index),并进一步提出了时间交集索引(TH*-Index)。实验结果表明,本文提出的模型和算法在多个真实数据集上表现出色。时间双向图(Temporal Bipartite Graph)是指在图中存在两类不同的顶点集合,并且这些顶点之间的关系(边)随着时间的推移而变化。
2024-08-07 23:01:09 1419 2
原创 论文阅读: Efficient Core Decomposition over Large Heterogeneous Information Networks | VLDB 2024
该论文提出了一种新的核心分解算法,旨在高效地处理大规模异构信息网络(HIN)。通过该算法,可以识别图中的密集子图,为社区发现和异常检测等实际应用提供了有力支持。论文重点介绍了算法的设计、实现及其在实际数据集上的优越性能。异构信息网络(HIN)是一类复杂的网络,包含多种类型的节点和边。与传统的同构信息网络(只有一种类型的节点和边)不同,HIN能够更真实地表示复杂系统中的多样性和关系。多类型节点:HIN中的节点可以代表不同类型的实体。例如,在学术网络中,节点可以是作者、论文、机构等。多类型边。
2024-08-06 16:43:58 761 1
原创 论文阅读: A Counting-based Approach for Efficient -Clique Densest Subgraph Discovery | SIGMOD 2024
最密子图发现 (DSD) 是图挖掘中的一个基本问题,已被广泛研究并应用于生物学、金融和社交网络等领域。作为DSD的一个典型问题,k-团最密子图 (CDS) 问题旨在从图中检测出一个子图,使得该子图中的 k-团数量与顶点数量的比值最大化。本文提出了一个基于 Frank-Wolfe 算法的新框架,该框架仅需要 k-团计数而非 k-团枚举,从而显着提高了计算效率。本文在14个大规模真实图上进行了广泛的实验,结果显示该算法的效率非常高,并且在相同准确性保证下比现有最先进的算法快了多达七个数量级。
2024-08-05 10:37:30 1224 2
原创 论文阅读:Most Probable Densest Subgraphs
本文提出了一种在不确定图中发现最有可能稠密子图(MPDS)的新方法。不确定图中的每条边都有存在概率,使得计算稠密子图变得複杂。作者定义了稠密子图概率,并证明了计算该概率是#P难的。为了解决这个问题,设计了基于抽样的高效近似算法,并提供了准确性保证。实验结果表明,该方法在生物、社交和金融网络中的应用中具有高效性和实用性。
2024-08-02 22:26:24 1076 2
原创 论文阅读:Scalable Algorithms for Densest Subgraph Discovery
密集子图发现(DSD)作为图数据挖掘的基础问题,旨在从图中找到密度最高的子图。虽然已有许多DSD算法,但它们在处理大规模图时往往不可扩展或效率低下。本文提出了在无向图和有向图上求解DSD问题的高效并行算法,通过优化迭代过程和减少迭代次数来计算核心数。同时引入了新的子图模型——w诱导子图,以避免不必要的枚举,从而提高算法效率。实验结果表明,所提算法在无向图和有向图上的性能均优于现有算法,具有良好的可扩展性和效率。
2024-08-01 16:57:18 867
原创 论文阅读:高效的广义最稠密子图发现算法
这篇论文提出了一种高效算法,通过利用广义超模密度定义和𝑐-core模型来加速图中最稠密子图和稠密至少k子图的发现过程。广义超模密度定义统一了多种密度计算方法,使得算法能够适应不同的应用场景,涵盖了多种特定的密度度量。实验结果表明,基于𝑐-core的优化算法在处理大规模图数据时,能够比现有方法快上三个数量级,显着提升了计算效率。此外,这篇论文还研究了具有尺寸约束的稠密子图问题(Dal𝑘S),提出了基于图分解的新算法,实验中该算法在绝大多数情况下接近最优密度。
2024-07-31 21:41:50 1390 1
原创 论文阅读: Efficient Maximum k-Plex Computation over Large Sparse Graphs
这篇论文提出了一种新算法 kPlexS,通过引入新的框架和技术,大大提高了在大型稀疏图上计算最大𝑘-plex 的效率。表中的数据包括预处理时间、启发式计算的𝑘-plex大小(P)、以及简化后的图的顶点数(|Vₖ|)和边数(Eₖ)。结果显示,kPlexS和kPlexF总能在不同时间限制内解决最多的实例,其中kPlexS在50秒内解决的实例数超过了其他算法在1800秒内的结果。结果显示,在给定的时间限制内,kPlexS 算法总是能够比最先进的算法(BnB、Maplex 和 KpLeX)解决更多的图实例。
2024-07-29 16:35:43 1154 3
原创 论文摘要:Efficient Algorithms for Densest Subgraph Discovery on Large Directed Graphs
在很多应用中,例如欺诈检测、社区挖掘和图压缩等,需要从有向图中找到密度最高的子图,这被称为有向最密子图问题(Directed Densest Subgraph, DDS)。DDS问题在社交网络、Web图和知识图谱等领域有着广泛的应用。例如,在社交网络中,可以用来检测假粉丝,在Web图中,可以用来发现网络社区。然而,现有的DDS解决方案在效率和可扩展性方面存在问题。例如,对于一个仅有三千条边的图,一些最好的确定性算法(确定最密子图的算法)需要三天的时间来完成计算。
2024-07-29 14:35:58 689 1
原创 论文阅读-无需验证的高效局部最密子图发现方法
在大规模图中寻找密集子图是一项基础的图挖掘任务,具有许多应用。局部最密子图(LDS)的概念最近被提出,用于识别复盖大图不同区域的多个密集子图。LDS 是其局部区域中密度最高的子图。当前最先进的算法通过迭代计算最密子图并将其从图中删除,然后通过代价高昂的最大流计算来验证每个候选项。尽管有先进的剪枝技术,但验证步骤仍然耗时,特别是对于较大的 k 值。在本文中,我们设计了无验证方法来提高寻找前 k 个 LDS 的效率。
2024-07-26 22:15:24 815
原创 CompressGraph: 基于规则的高效并行图分析压缩方法
随着数据爆炸式增长,图数据分析在社交网络、科学计算和数据挖掘等领域变得越来越重要。然而,处理大规模图数据面临着存储和计算资源的挑战。传统的图压缩方法可能会丢失重要信息,影响分析结果的准确性。CompressGraph框架旨在通过规则基压缩技术,在有效压缩图数据的同时保留其结构和信息,实现高效的并行图分析
2024-07-25 03:14:26 841 1
原创 快速理解:高效的k-团最密子图搜索算法
这篇论文提出的PSCTL和CPSample算法在解决大规模网络中的𝑘-团最密子图搜索问题上展现了显着的性能优势。实验结果表明,这些新算法能够大幅提高运行速度,同时保持结果的高准确性,这使得它们在实际应用中具有极大的潜力。PSCTL和CPSample不仅在处理大规模数据集时表现优越,还能有效应对各种不同的网络结构,这意味着它们可以广泛应用于例如社交网络分析、生物信息学、推荐系统和网络安全等领域。
2024-07-21 14:35:16 626 1
原创 理解 DEKG-ILP 模型:提升知识图谱链接预测的新方法
现有的方法主要集中在预测新知识图谱中的封闭链接,即在新图谱内部的链接。DEKG-ILP模型通过结合全局和局部的信息,能够有效预测知识图谱中缺失的桥接链接和封闭链接,从而提升知识图谱的完整性和推理能力。DEKG-ILP模型的成功不仅在于解决了现有方法的局限性,还在于为处理复杂的、动态演变的知识图谱提供了一种有效的方法,具有广泛的应用前景和研究价值。上图展示了断开的新兴知识图谱(DEKG)和原始知识图谱(KG)的一个示例,用于解释桥接链接和封闭链接的概念,虚线表示缺失的链接。提取每个链接周围的局部拓扑信息。
2024-07-19 19:23:13 1216 1
原创 ELPIS: 颠覆性的图结构技术,实现大规模数据的高效相似性搜索
ELPIS 提出了一种新的基于图的索引方法,结合了树结构和图结构的优点,以实现高效的索引构建和近似搜索。
2024-07-19 01:45:43 781
原创 GPredictor:基于图嵌入的并发查询性能预测系统
GPredictor 提供了一个创新且高效的并发查询性能预测解决方案,利用图嵌入技术和动态优化方法,显着提升了查询性能预测的准确性和效率。传统的性能预测方法多针对单一查询设计,无法有效处理并发查询的性能预测问题。其准确预测查询执行时间及处理动态工作负载的能力,使其成为数据库管理和优化的强大工具,具有广泛的应用前景和实际价值。总之,GPredictor 不仅树立了查询性能预测的新标准,还为先进的数据库管理和优化开启了新的可能性。是一个基于图嵌入技术的性能预测系统,专为并发和动态工作负载设计。
2024-07-18 00:11:44 752 1
原创 多重网络中密集子图的新算法:S-core方法论
在复杂系统研究中,多重网络(Multilayer Networks,ML)已成为建模多维度互动的重要工具。这种模型在社会网络、生物系统和金融市场等领域具有广泛应用。例如,在社交网络分析中,个体间的互动可能同时涉及社交、专业和兴趣等多个层面。多重网络的概念为我们提供了一个更全面的框架,用以捕捉这些复杂的关系结构。
2024-07-16 21:15:07 861 3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人