论文阅读: Efficient Core Decomposition over Large Heterogeneous Information Networks | VLDB 2024

摘要

该论文提出了一种新的核心分解算法,旨在高效地处理大规模异构信息网络(HIN)。通过该算法,可以识别图中的密集子图,为社区发现和异常检测等实际应用提供了有力支持。论文重点介绍了算法的设计、实现及其在实际数据集上的优越性能。

1. 背景与动机

异构信息网络(HIN)包含多种类型的节点和边,广泛存在于社交网络、生物网络和知识图谱等领域。现有的核心分解方法主要集中于同构网络,对于HIN中的核心分解关注较少。本文旨在填补这一空白,提出一种适用于HIN的高效核心分解算法。

什么是异构信息网络(HIN)?

异构信息网络(HIN)是一类复杂的网络,包含多种类型的节点和边。与传统的同构信息网络(只有一种类型的节点和边)不同,HIN能够更真实地表示复杂系统中的多样性和关系。

在这里插入图片描述

  • 多类型节点:HIN中的节点可以代表不同类型的实体。例如,在学术网络中,节点可以是作者、论文、机构等。
  • 多类型边:HIN中的边可以代表不同类型的关系。例如,在学术网络中,边可以表示作者与论文的关系、论文与机构的关系等。
  • 元路径:在HIN中,元路径(Meta-path)是通过特定类型的节点和边连接起来的一条路径,表示不同类型实体之间的复杂关系。
2. 模型与方法
2.1 核心分解模型

核心分解是一种图算法,通过逐步去除度数较低的节点,找到一个图的k-core,即一个图的最大子图,其中每个节点至少与k个其他节点相连。这种方法可以帮助识别图中的密集区域,即高连接度的子结构。

在异构信息网络(HIN)中,核心分解模型需要考虑不同类型节点和边的复杂关系。为此,作者提出了一种基于元路径的密度函数。该函数的设计考虑了两个方面:

  1. 元路径实例:分子为特定元路径实例的数量,这些实例表示图中不同类型节点之间的复杂关系。
  2. 几何平均数:分母为子图中i种不同类型顶点集大小的几何平均数,这使得不同类型节点的规模分布可以被公平比较。

通过这种密度函数,可以将HIN中的密集子图定义为具有最高密度的多部子图。

2.2 精确算法

精确算法旨在找到HIN中的最密集多部子图。其主要步骤包括:

  1. 最小割问题

    :将密集子图搜索问题转化为一系列的最小割问题。通过求解这些最小割问题,可以识别图中的高密度区域。

    • 构建流网络:将P-部子图中的每个元路径实例表示为流网络中的一个节点,并根据节点间的连接构建流网络的边。
    • 设置边容量:根据不同颜色的边设置容量,确保每个边的容量反映节点之间的连接强度。
  2. 迭代求解

    :通过迭代优化,逐步缩小搜索范围,最终找到具有最高密度的多部子图。

    • 初始化:从初始子图开始,逐步移除度数较低的节点,保留密集区域。
    • 优化搜索:通过迭代过程,不断调整和优化子图,直到找到密度最高的区域。

该算法的计算复杂度较高,但能够保证找到全局最优解,适用于中小规模的HIN数据集。

2.3 近似算法

为了提高计算效率,作者提出了一种近似算法,其主要步骤包括:

  1. 剥离过程

    :通过逐步移除度数较低的节点,快速找到图中的密集区域。该过程类似于k-core剥离,通过逐层移除低度数节点,最终留下一个密集子图。

    • 初始剥离:从整个网络开始,逐步移除度数较低的节点。
    • 逐步剥离:在每一层剥离后,重新计算剩余节点的度数,继续移除度数最低的节点,直到剩余节点构成一个密集子图。
  2. 剪枝规则

    :在搜索过程中应用剪枝规则,减少不必要的计算,显著减少搜索空间和计算量。

    • 设定剪枝条件:根据节点的度数和边的权重设定剪枝条件,提前排除不符合条件的节点。
    • 优化搜索过程:在每次迭代中,应用剪枝规则减少计算量,加速算法运行。

尽管近似算法的计算复杂度较低,但能够在较短时间内找到接近最优的解,适用于大规模HIN数据集。

3. 算法优化

为解决计算复杂度高的问题,作者提出了新的剪枝规则。这些规则可以显著减少需要解决的最小割问题实例的数量,从而提高精确算法的效率。剪枝规则的基本思路如下:

  • 剪枝条件:在每次迭代过程中,根据节点的度数和边的权重,确定是否可以剪枝。
  • 减少计算量:通过剪枝,可以避免计算不必要的最小割问题,从而减少总体计算量。

实验结果表明,通过剪枝,70-90%的实例可以被消除,使得改进后的精确算法在性能上超过近似算法。

4. 实验结果

作者在多个实际数据集上进行了广泛的实验,结果显示所提算法在识别HIN中的密集子图方面具有显著的优越性和效率。无论是精确算法还是近似算法,都在处理大规模图数据时表现出色。

在这里插入图片描述

表5展示了不同算法在多个数据集上的运行时间和近似比,包括MovieLens、DBLP、Douban、DBpedia、Freebase和cisco(g22)数据集。主要观察结果如下:

  • 运行时间:以100秒为单位,数值越小表示算法运行越快。精确算法(ExactGV和ExactIt)在某些数据集上运行时间较长,而近似算法(Approximate)在运行时间上表现更优。
  • 近似比:近似算法的结果接近最优解,具体表现为数值接近1。

不同算法在平衡运行时间和结果准确性方面表现如下:

  • ExactGVExactIt:精确算法,提供最优解但运行时间较长。
  • Approximate:近似算法,运行时间较短且结果接近最优。
  • ExactGVVPExactItVP:改进版精确算法,优化了运行时间。
  • AdvExactGVAdvExactGVIt:进一步改进的精确算法,在大多数情况下平衡了运行时间和结果准确性。

总的来说,近似算法在大规模数据集上具有明显优势,而改进后的精确算法则在平衡运行时间和准确性方面表现出色。根据实际应用需求选择合适的算法尤为重要。

5. 结论与未来研究方向

该论文为异构信息网络中的核心分解问题提供了有效的解决方案,通过提出高效的算法,使得在实际应用中识别密集子图成为可能。这项研究在社区发现、异常检测等领域具有重要的应用价值。未来研究方向包括进一步优化现有算法,使其能够处理更大规模的数据集和更复杂的HIN结构,探索该算法在其他领域中的应用,如金融网络分析、医疗数据分析等,以及开发实时核心分解算法,能够动态处理不断变化的HIN数据,满足实时分析需求。

论文地址:https://www.researchgate.net/publication/382512225_Efficient_Core_Decomposition_Over_Large_Heterogeneous_Information_Networks

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值