理解 DEKG-ILP 模型:提升知识图谱链接预测的新方法

背景

知识图谱(Knowledge Graph,KG)是一种通过节点(实体)和边(关系)来表示数据的结构化图谱。常见的知识图谱有Freebase、NELL和DBpedia。它们在信息检索、推荐系统和问答系统等应用中起着重要作用。知识图谱的一个重要任务是链接预测,即预测图中缺失的链接。这一任务已经取得了一定的成功,主要归功于近年来知识图谱嵌入方法的发展。

然而,知识图谱并不是静态的,而是动态演变的。例如,DBpedia在2015年末到2016年初,每天都有约200个新的实体出现。传统的嵌入方法在处理这些新出现的实体时效率低下,因为这些实体在训练过程中是未见的。虽然可以通过重新训练整个图谱来解决这个问题,但这种方法在实际应用中耗时且计算量大。因此,诱导链接预测(Inductive Link Prediction,ILP)成为一个重要的研究方向,其目的是在新出现的知识图谱中预测未见实体的链接。

为什么需要DEKG-ILP模型

现有的方法主要集中在预测新知识图谱中的封闭链接,即在新图谱内部的链接。然而,在许多实际应用中,新图谱和原始图谱之间缺少连接,这些桥接链接(bridging links)携带了关键的进化信息。例如,在药物相互作用的预测中,桥接链接可能包含重要的信息。现有的方法(如Grail和TACT)在处理这种断开的新兴知识图谱(Disconnected Emerging Knowledge Graphs,DEKGs)时,无法有效预测桥接链接。为了填补这一空白,提出了DEKG-ILP模型。

在这里插入图片描述

上图展示了断开的新兴知识图谱(DEKG)和原始知识图谱(KG)的一个示例,用于解释桥接链接和封闭链接的概念,虚线表示缺失的链接

DEKG-ILP模型的主要功能和目标

DEKG-ILP模型旨在预测DEKGs中的缺失链接,包括封闭链接和桥接链接。该模型由两个主要模块组成:

  1. CLRM(基于对比学习的关系特定特征建模)

    提取全局的、基于关系的语义特征,这些特征在原始KG和DEKG之间共享。

  2. GSM(基于图神经网络的子图建模)

    提取每个链接周围的局部拓扑信息。

DEKG-ILP模型的实现方式

下图展示了整个DEKG-ILP模型的架构,包括CLRM(基于对比学习的关系特定特征建模)和GSM(基于图神经网络的子图建模)两个主要模块的工作流程

在这里插入图片描述

  1. CLRM模块

    • 关系特定特征建模:提取并表示每个关系的语义特征,将实体表示为这些关系特征的融合。

    • 对比学习:通过设计正负样本生成策略,优化关系特定特征。

  2. GSM模块

    • 子图提取:从知识图谱中提取目标链接周围的子图。封闭链接使用单个子图,桥接链接使用两个断开的子图。
    • 节点标记:为子图中的每个节点打标签,表示它们到目标链接头实体和尾实体的距离。
    • 图神经网络(R-GCN):使用关系图卷积网络处理子图,提取节点的拓扑特征。
  3. 综合评分

    结合CLRM的语义评分和GSM的拓扑评分,得到目标链接的最终评分。

实验效果

在多个基准数据集(如FB15k-237、NELL-995和WN18RR)上的实验表明,DEKG-ILP模型在预测封闭链接和桥接链接方面均显着优于现有方法。特别是,DEKG-ILP在桥接链接预测任务中显示了显着的提升,这证明了其在处理DEKGs方面的有效性。

下图展示了DEKG-ILP模型与其他基线模型在三个数据集(FB15k-237、NELL-995和WN18RR)上的性能比较

在这里插入图片描述

以下是附图中的一些内容说明:

数据集
  • FB15k-237
  • NELL-995
  • WN18RR
模型
  • TransE:一种基于转移的嵌入方法。
  • RotatE:一种在复数空间中建模转移的嵌入方法。
  • ConvE:一种基于卷积神经网络的嵌入方法。
  • GEN:一种基于图神经网络的方法。
  • RuleN:一种基于规则挖掘的方法。
  • Grail:一种基于子图推理的方法,专为DEKGs设计。
  • TACT:一种专注于关系预测的子图推理方法。
  • DEKG-ILP:本文提出的新模型。
评价指标
  • MRR(Mean Reciprocal Rank):平均倒数排名。
  • Hits@1:前1命中率。
  • Hits@5:前5命中率。
  • Hits@10:前10命中率。

未来研究方向和影响

  1. 进一步优化模型:可以探索更有效的对比学习策略或更强大的图神经网络结构。
  2. 应用扩展:将DEKG-ILP应用于更多实际场景,如医学知识图谱中的药物相互作用预测。
  3. 跨图谱应用:研究如何在不同领域的知识图谱之间进行链接预测,增强跨领域的知识融合和利用。

DEKG-ILP模型的成功不仅在于解决了现有方法的局限性,还在于为处理复杂的、动态演变的知识图谱提供了一种有效的方法,具有广泛的应用前景和研究价值。

结论

DEKG-ILP模型通过结合全局和局部的信息,能够有效预测知识图谱中缺失的桥接链接和封闭链接,从而提升知识图谱的完整性和推理能力。这一模型不仅在现有方法中脱颖而出,还为未来的知识图谱研究和应用提供了新的思路和方向。

论文地址:https://www.computer.org/csdl/proceedings-article/icde/2023/222700a381/1PByD9gXXKE

  • 12
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值