作者简介:☕️大家好,我是intelligent_M,一个Java后端开发者!
当前专栏:intelligent_M—— 实现一个环形数组 ,CSDN博客。后续会更新Java相关技术栈。
创作不易 欢迎点赞评论!!!
实现一个环形数组
自己实现一个CycleArray
- 前面的用环形数组实现的栈和队列就是基于这个环形数组的。
核心原理
环形数组的关键在于,它维护了两个指针 start 和 end,start 指向第一个有效元素的索引,end 指向最后一个有效元素的下一个位置索引。
这样,当我们在数组头部添加或删除元素时,只需要移动 start 索引,而在数组尾部添加或删除元素时,只需要移动 end 索引。
当 start, end 移动超出数组边界(< 0 或 >= arr.length)时,我们可以通过求模运算 % 让它们转一圈到数组头部或尾部继续工作,这样就实现了环形数组的效果。
-
在我的代码中,环形数组的区间被定义为左闭右开的,即 [start, end) 区间包含数组元素。所以其他的方法都是以左闭右开区间为基础实现的。
-
因为这样初始化 start = end = 0 时区间 [0, 0) 中没有元素,但只要让 end 向右移动(扩大)一位,区间 [0, 1) 就包含一个元素 0 了。
-
如果你设置为两端都开的区间,那么让 end 向右移动一位后开区间 (0, 1) 仍然没有元素;如果你设置为两端都闭的区间,那么初始区间 [0, 0] 就已经包含了一个元素。这两种情况都会给边界处理带来不必要的麻烦。
/**
* @author M
* @version 1.0
* 环形数组
*/
public class CycleArray<T> {
private T[] arr;//泛型数组
private int start;//开始索引 毕区间
private int end;//最后一个有效位置的下一个位置 索引 开区间
private int count;//元素个数
private int size;//数组大小
public CycleArray(){
this(1);
}
@SuppressWarnings("unchecked")
public CycleArray(int size){
this.size = size;
//因为 Java 不支持直接创建泛型数组,所以这里使用了类型转换
this.arr = (T[]) new Object[size];
//start 指向第一个有效元素的索引,闭区间
this.start = 0;
//切记 end 是一个开区间
//即 end 指向最后一个有效元素的下一个位置索引
this.end = 0;
this.count = 0;
}
//自动扩缩容辅助函数
@SuppressWarnings("unchecked")
private void resize(int newSize){
//创建新数组
T[] newArr = (T[]) new Object[newSize];
//将旧数组的元素复制到新数组中
for(int i = 0; i < count; i++){
newArr[i] = arr[(start + i) % size];
}
arr = newArr;
//重置start 和 end 指针
start = 0;
end = count;
size = newSize;
}
//在数组的头部添加元素,时间复杂度O(1)
public void addFirst(T val){
//当数组满时,扩容为原来的两倍
if(isFull()){
resize(size * 2);
}
//因为 start 是闭区间,所以先左移,再赋值
start = (start - 1 + size) % size;
arr[start] = val;
count++;
}
//删除数组头部元素,时间复杂度O(1)
public T removeFirst(){
if(isEmpty()){
throw new IllegalStateException("Array is empty");
}
// 记录被删除元素 用于返回
T t = arr[start];
//因为 start 是闭区间,所以先赋值,再右移
arr[start] = null;
start = (start - 1) % size;
count--;
//如果数组元素数量减少到原来大小的四分之一,则减小数组大小为一一半
if(count > 0 && count == size / 4){
resize(size / 2);
}
return t;
}
//在数组尾部添加元素,时间复杂度O(1)
public void addLast(T val){
if(isFull()){
resize(size * 2);
}
//因为end是开区间,所以先赋值,再右移
arr[end] = val;
end = (end + 1) % size;
count++;
}
//删除数组尾部元素,时间复杂度O(1)
public T removeLast(){
if(isEmpty()){
throw new IllegalStateException("Array is empty");
}
//因为 end 是开区间,所以先左移,再赋值
end = (end - 1) % size;
// 记录被删除元素 用于返回
T t = arr[end];
arr[end] = null;
count--;
//缩容
if(count > 0 && count == size /4){
resize(size / 2);
}
return t;
}
//获取数组头部元素,时间复杂度 O(1)
public T getFirst(){
if(isEmpty()){
throw new IllegalStateException("Array is empty");
}
return arr[start];
}
//获取数组尾部元素,时间复杂度O(1)
public T getLast(){
if(isEmpty()){
throw new IllegalStateException("Array is empty");
}
//end 是开区间,指向的是下一个元素的位置,所以要减1
//加一个size防止减为负数
return arr[(end - 1 + size) % size];
}
//判断数组是否已满
public boolean isFull(){
return count == size;
}
//获取数组元素个数
public int size(){
return count;
}
//判断数组是否为空
public boolean isEmpty(){
return count == 0;
}
}
-
数组增删头部元素的效率真的只能是
O(N)
么? -
我们都说,在数组增删头部元素的时间复杂度是 O(N),因为需要搬移元素。但是,如果我们使用环形数组,其实是可以实现在 O(1) 的时间复杂度内增删头部元素的。
-
当然,上面实现的这个环形数组只提供了 addFirst, removeFirst, addLast, removeLast 这几个方法,并没有提供 我们之前实现的动态数组 的某些方法,比如删除指定索引的元素,获取指定索引的元素,在指定索引插入元素等等。