回溯可解决的问题:
- 确定参数
- 确定终止条件 path.size==k
- 确定单层循环
递 推 小 结:
1、递推是从已知条件开始;
2、递推必须有明确的通用公式;
3、递推必须是有限次运算。
递 归 小 结:
1.递归:未知的推到已知的,再由此返回。
2. 基本思想:将复杂的操作分解为若干重复的简单操作。
77 组合
需要一个二维数组记录结果,一个一维数组记录路径
注意带***的
class Solution {
List<List<Integer>> result=new ArrayList<>();
LinkedList<Integer> path=new LinkedList<>();
public List<List<Integer>> combine(int n, int k) {
backtracking(n,k,1);
return result;
}
public void backtracking(int n,int k,int index){
if(path.size()==k){
result.add(new ArrayList<>(path));//***
return;
}
for(int i=index;i<=n;i++){
path.add(i);
backtracking(n,k,i+1);
path.removeLast();//***
}
}
}
剪枝优化
216 组合综合III
注意sum的回溯,未剪枝优化版本
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path =new LinkedList<>();
public List<List<Integer>> combinationSum3(int k, int n) {
backTracking(n,k,1,0);
return result;
}
public void backTracking(int n,int k, int index,int sum){
if (path.size() == k) {
if (sum == n) result.add(new ArrayList<>(path));
return;
}
for (int i = index; i <= 9 ; i++) {
path.add(i);
sum += i;
backTracking(n, k, i + 1, sum);
//回溯
path.removeLast();
sum -= i;
}
}
}
17 电话号码的字母组合
class Solution {
List<String> result = new ArrayList<>();
public List<String> letterCombinations(String digits) {
if(digits==null ||digits.length()==0) return result;
String[] list={"","","abc","def","ghi","jkl","mno","pqrs","tuv","wxyz"};
backTracking(digits,list,0);
return result;
}
// 每次迭代获取一个字符串,所以会涉及大量的字符串拼接,所以这里选择更为高效的 StringBuilder
StringBuilder temp = new StringBuilder();
public void backTracking(String digits, String[] list, int num) {
//遍历全部一次记录一次得到的字符串
if (num == digits.length()) {
result.add(temp.toString());
return;
}
//str 表示当前num对应的字符串
String str = list[digits.charAt(num) - '0'];
for (int i = 0; i < str.length(); i++) {
temp.append(str.charAt(i));
//递归,处理下一层
backTracking(digits, list, num + 1);
//剔除末尾的继续尝试
temp.deleteCharAt(temp.length() - 1);
}
}
}