大数据- 初探MapReduce

本文详细介绍了使用Hadoop MapReduce实现词频统计的过程,包括创建Maven项目,配置相关依赖,编写映射器、归并器和驱动器类,以及在虚拟机上运行和查看结果。通过修改代码,实现对单词计数的优化,并讨论了多个Reduce任务的合并及不同单词数的统计方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、MapReduce编程实例——词频统计实现

启动hadoop服务
在这里插入图片描述

1、准备数据文件

(1)在虚拟机上创建文本文件

创建wordcount目录,在里面创建words.txt文件
在这里插入图片描述

(2)上传文件到HDFS指定目录

创建/wordcount/input目录,执行命令:hdfs dfs -mkdir -p /wordcount/input
在这里插入图片描述
将文本文件words.txt,上传到HDFS的/wordcount/input目录
在这里插入图片描述
在Hadoop WebUI界面上查看上传的文件
在这里插入图片描述

2、创建Maven项目

创建Maven项目 - MRWordCount
在这里插入图片描述
在这里插入图片描述

3、添加相关依赖

在pom.xml文件里添加hadoop和junit依赖
在这里插入图片描述

<dependencies>                                   
    <!--hadoop客户端-->                             
    <dependency>                                 
        <groupId>org.apache.hadoop</groupId>     
        <artifactId>hadoop-client</artifactId>   
        <version>3.3.4</version>                 
    </dependency>                                
    <!--单元测试框架-->                                
    <dependency>                                 
        <groupId>junit</groupId>                 
        <artifactId>junit</artifactId>           
        <version>4.13.2</version>                
    </dependency>                                
</dependencies>                                                  

4、创建日志属性文件

在resources目录里创建log4j.properties文件
在这里插入图片描述

log4j.rootLogger=INFO, stdout, logfile
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/wordcount.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

5、创建词频统计映射器类

创建net.hf.mr包,在包里创建WordCountMapper类
在这里插入图片描述
在这里插入图片描述

package net.hw.mr;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * 功能:词频统计映射器类
 * 作者:hf
 * 日期:2022年12月13日
 */
public class WordCountMapper extends Mapper<LongWritable, Text, LongWritable, Text> {
   
    @Override
    protected void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {
   
        // 直接将键值对数据传到下一个阶段
        context.write(key, value);
    }
}


6、创建词频统计驱动器类

在net.hf.mr包里创建WordCountDriver类
在这里插入图片描述
在这里插入图片描述

package net.hw.mr;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.net.URI;

/**
 * 功能:词频统计驱动器类
 * 作者:hf
 * 日期:2022年12月13日
 */
public class WordCountDriver {
   
    public static void main(String[] args) throws Exception {
   
        // 创建配置对象
        Configuration conf = new Configuration();
        // 设置数据节点主机名属性
        conf.set("dfs.client.use.datanode.hostname", "true");

        // 获取作业实例
        Job job = Job.getInstance(conf);
        // 设置作业启动类
        job.setJarByClass(WordCountDriver.class);

        // 设置Mapper类
        job.setMapperClass(WordCountMapper.class);
        // 设置map任务输出键类型
        job.setMapOutputKeyClass(LongWritable.class);
        // 设置map任务输出值类型
        job.setMapOutputValueClass(Text.class);

        // 定义uri字符串
        String uri = "hdfs://master:9000";
        // 创建输入目录
        Path inputPath = new Path(uri + "/wordcount/input");
        // 创建输出目录
        Path outputPath = new Path(uri + "/wordcount/output");

        // 获取文件系统
        FileSystem fs =  FileSystem.get(new URI(uri), conf
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值