LC振荡电路的工作原理

电感电容都是储能元件,当电感充满电,此时电感与电容连在一起,如图所示

电感两端的电压是一个正弦波,当频率为:f=\frac{1}{2\pi \sqrt{LC}},此时电感电容产生振荡

由于两个元件在工作过程中存在损耗,振荡会随着时间变化而慢慢消失


 产生过程

1.假如电容充满电,上极板储存正电荷,下极板储存负电荷,电容给电感充电

 此时电感电流逐渐增大,方向时从上面流入,下面流出,电感两端电压逐渐减少,直至电容释放完能量。当电容储存的电能完全转化为电感的磁能时。电感两端电压为零,流过电感电流为正向最大

电感储存的磁能转化为电容的电能,即给电容充电,电感电流方向保持不变,反向充电,电感两端电压慢慢增高,直至负的最大,流过电感电流逐渐变为零

此时电感电容能量如图所示 

 

接着电容又通过电感反向放电, 电感电流逐渐增大,方向时从下面流入,上面流出,电感两端电压逐渐减少,直至电容释放完能量。当电容储存的电能完全转化为电感的磁能时。电感两端电压为零,流过电感电流为负向最大

 此时电感电流方向维持不变,从下面流进,上面流出,正电荷流向正极板,负电荷流向负极板,直至电感电压为正的最大,电感电流为零

以此类推,电感与电容之间重复充放电,形成于正弦变化的振荡波型

在MATLAB中,我们可以使用模拟方法模拟LC振荡电路振荡电路由电感(L)和电容(C)组成,它能够产生一个频率稳定的正弦波输出。LC振荡电路是一种重要的电子电路,可以在通信系统、无线电发射器和接收器等领域中广泛应用。 要在MATLAB中模拟LC振荡电路,我们首先需要建立电路方程。对于LC振荡电路,我们可以使用公式: (1)L * d^2Q/dt^2 + Q/C = 0 其中,Q是电路中的电荷量,L是电感的值,C是电容的值。 为了解决这个方程,我们可以使用MATLAB中的常微分方程(ODE)求解器。我们需要定义方程的初始条件和参数,并将其输入到ODE求解器中。MATLAB将根据给定的条件和参数计算方程的解,并输出振荡电路的电荷量随时间的变化。 另外,在模拟之前,我们还需要确定LC振荡电路的参数值。这些参数值可以根据实际电路的设计和需要进行选择。对于MATLAB模拟,我们可以选择一些合适的参数值,如L=0.1H和C=1µF。 在MATLAB中,我们可以使用ode45函数来解决常微分方程。这个函数通过自适应步长控制方法,可以有效地计算方程的解。我们需要输入方程、初始条件、参数值和时间范围,并将结果存储在一个矩阵中。我们可以使用plot函数来绘制电荷量随时间的变化曲线。 总之,通过MATLAB的模拟,我们可以很方便地分析LC振荡电路的动态行为,如电荷量随时间的变化。这对于电路设计、分析和优化是非常有益的。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值