战争中保持各个城市间的连通性非常重要。本题要求你编写一个报警程序,当失去一个城市导致国家被分裂为多个无法连通的区域时,就发出红色警报。注意:若该国本来就不完全连通,是分裂的k个区域,而失去一个城市并不改变其他城市之间的连通性,则不要发出警报。
输入格式:
输入在第一行给出两个整数N(0 < N ≤ 500)和M(≤ 5000),分别为城市个数(于是默认城市从0到N-1编号)和连接两城市的通路条数。随后M行,每行给出一条通路所连接的两个城市的编号,其间以1个空格分隔。在城市信息之后给出被攻占的信息,即一个正整数K和随后的K个被攻占的城市的编号。
注意:输入保证给出的被攻占的城市编号都是合法的且无重复,但并不保证给出的通路没有重复。
输出格式:
对每个被攻占的城市,如果它会改变整个国家的连通性,则输出Red Alert: City k is lost!,其中k是该城市的编号;否则只输出City k is lost.即可。如果该国失去了最后一个城市,则增加一行输出Game Over.。
输入样例:
5 4
0 1
1 3
3 0
0 4
5
1 2 0 4 3
输出样例:
City 1 is lost.
City 2 is lost.
Red Alert: City 0 is lost!
City 4 is lost.
City 3 is lost.
Game Over.
思路:结合图和代码及注释可理解
初始图:
1被攻占后:连通性不变 只是cost
2被攻占后:失去一个城市并不改变其他城市之间的连通性,则不要发出警报。只是cost
0被攻占后:当失去0城市导致国家被分裂为多个无法连通的区域,发出红色警报
4被攻占后:若该国本来就不完全连通,是分裂的k个区域,而失去一个城市并不改变其他城市之间的连通性,则不要发出警报。
3被攻占后:全部攻占完啦,Game Over~
AC:
#include<bits/stdc++.h>
using namespace std;
int p[510];//并查集数组
int per[510];//记录被攻占的城市
struct Edge
{
int a,b;
}e[5005];
//查找 返回祖宗结点+路径压缩
int find(int x)
{
if(p[x]!=x)
p[x]=find(p[x]);
return p[x];
}
void Union(int x,int y) //并查集连通函数
{
int px=find(x), py=find(y);
if(px!=py)
p[px]=py;
}
int count(int z) //通过并查集查找连通分支数
{
int cnt=0;
for(int i=0;i<z;i++)
if(p[i]==i)
cnt++;
return cnt;
}
void INI() //初始化并查集
{
for(int i=0;i<510;i++)
p[i]=i;
}
int main()
{
INI();
int n,m,k;
cin>>n>>m;
for(int i=0;i<m;i++)
{
cin>>e[i].a>>e[i].b;
Union(e[i].a,e[i].b);
}
int c1=count(n);//初始连通个数为2
cin>>k;
for(int j=0;j<k;j++)
{
int c2=0;
int num;
cin>>num;
per[num]=1; //记录被攻占的城市序号
INI(); //每一次都重新初始化并查集
for(int i=0;i<m;i++)
{
if(per[e[i].a]==1||per[e[i].b]==1) //如果该城市已被攻占 就跳过
continue;
Union(e[i].a,e[i].b); //连通两个城市
}
c2=count(n); //每删除一条边,就重新统计连通分支数
cout<<c2<<endl; //3 3 5 5 5
if(c1+1 == c2||c1 ==c2) //如果一个城市被攻占后,连通分量增加一个或者不变,表明攻占的城市并不是红色警戒
printf("City %d is lost.\n",num);
else
printf("Red Alert: City %d is lost!\n",num);
c1 = c2; //更新连通每次的连通分支数 ,(注意2)
}
c1=count(n); //最后统计连通分量 若等于城市数,则表面所有城市已被攻占
if(c1==n)
printf("Game Over.\n");
return 0;
}