1. 背景介绍
优化问题,作为数学领域的经典分支,其研究历史可追溯至数个世纪前。从早期费马和拉格朗日的微积分研究,到线性规划和非线性规划的逐步发展,优化理论为解决资源分配、路径规划、工程设计等众多实际问题提供了坚实的数学基础。
随着人工智能的蓬勃发展,优化问题的重要性愈发凸显。几乎所有人工智能算法,从机器学习到深度学习,从强化学习到机器人控制,都离不开优化问题的求解。优化算法的选择和应用,直接影响着人工智能模型的性能和效率。可以说,优化问题是人工智能的灵魂,贯穿于人工智能的各个领域。
1.1 优化问题的定义
优化问题是指在一定约束条件下,寻找目标函数的最优解的问题。它通常可以表示为如下形式:
minimize/maximizef(x)subject togi(x)≤0,i=1,2,…,mhj(x)=0,j=1,2,…,p \begin{aligned} & \text{minimize/maximize} \quad f(x) \\ & \text{subject to} \quad g_i(x) \leq 0, \quad i = 1, 2, \ldots, m \\ & \qquad \qquad \qquad h_j(x) = 0, \quad j = 1, 2, \ldots, p \end{aligned}

优化问题在数学和人工智能领域中起着关键作用,从机器学习模型参数的训练到深度学习的优化,无一不依赖于有效的优化算法。本文深入探讨了梯度下降法和牛顿法等核心概念,通过Python代码实例解析了它们的实现,并展望了未来优化问题在大规模、非凸和鲁棒优化等方向的发展趋势。
订阅专栏 解锁全文
713

被折叠的 条评论
为什么被折叠?



