大语言模型原理与工程实践:Tokenlevel 强化建模

1. 背景介绍

1.1 大语言模型的崛起

近年来,随着深度学习技术的飞速发展,大语言模型(Large Language Model,LLM)逐渐成为人工智能领域的研究热点。这些模型通常拥有数十亿甚至数万亿的参数,能够在海量文本数据上进行训练,并展现出惊人的语言理解和生成能力。例如,OpenAI 的 GPT-3、Google 的 BERT 和 LaMDA 等模型,在自然语言处理的各个任务中都取得了突破性的成果,例如机器翻译、文本摘要、问答系统等。

1.2 Token-level 强化建模的优势

传统的语言模型训练方法通常采用最大似然估计(MLE)或交叉熵损失函数,旨在最大化模型预测序列与真实序列之间的相似度。然而,这种方法存在一些局限性,例如:

  • 缺乏对任务特定目标的优化: MLE 训练的目标是生成与训练数据分布相似的文本,而实际应用中往往需要模型完成特定的任务,例如生成流畅、信息丰富、符合语法规范的文本。
  • 难以处理长文本: 由于计算复杂度和内存限制,传统的语言模型难以处理长文本,导致生成文本的连贯性和逻辑性较差。

为了克服这些局限性,研究人员提出了 Token

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智能应用

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值